Solving the second kind Volterra-Fredholm type of two-dimensional integral equations on non-rectangular domains via radial basis functions

IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED
Mohsen Jalalian , Manochehr Kazemi , Mohammad Esmael Samei
{"title":"Solving the second kind Volterra-Fredholm type of two-dimensional integral equations on non-rectangular domains via radial basis functions","authors":"Mohsen Jalalian ,&nbsp;Manochehr Kazemi ,&nbsp;Mohammad Esmael Samei","doi":"10.1016/j.camwa.2025.07.027","DOIUrl":null,"url":null,"abstract":"<div><div>This research, introduces a method to solve two-dimensional nonlinear Volterra-Fredholm integral equations with non-rectangular domains, numerically, based on radial basis functions. The method doesn't need a background mesh or cell structure in the domain. In the approach, all of the integrals are estimated using Gauss-Legendre quadrature formula. Error analysis and the rate of convergence of this method are also investigated. Numerical examples are included to demonstrate the validity and efficiency of this method.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"195 ","pages":"Pages 265-279"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125003153","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This research, introduces a method to solve two-dimensional nonlinear Volterra-Fredholm integral equations with non-rectangular domains, numerically, based on radial basis functions. The method doesn't need a background mesh or cell structure in the domain. In the approach, all of the integrals are estimated using Gauss-Legendre quadrature formula. Error analysis and the rate of convergence of this method are also investigated. Numerical examples are included to demonstrate the validity and efficiency of this method.
利用径向基函数求解非矩形域上第二类Volterra-Fredholm型二维积分方程
本文介绍了一种基于径向基函数的非矩形域二维非线性Volterra-Fredholm积分方程的数值求解方法。该方法不需要域内的背景网格或单元结构。在该方法中,所有的积分都使用高斯-勒让德积分公式进行估计。研究了该方法的误差分析和收敛速度。算例验证了该方法的有效性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信