Moran Wang , Bowen Ren , Xiaofan Wu , Junyi Guo , Yu Cao , Lintong Men , Wei Shi , Cuntai Zhang , Li Lin , Jiagao Lv , Sheng Li , Shengqi Huo
{"title":"S100A9 inhibition ameliorates HFpEF by modulating mitochondrial fission and oxidative stress","authors":"Moran Wang , Bowen Ren , Xiaofan Wu , Junyi Guo , Yu Cao , Lintong Men , Wei Shi , Cuntai Zhang , Li Lin , Jiagao Lv , Sheng Li , Shengqi Huo","doi":"10.1016/j.intimp.2025.115280","DOIUrl":null,"url":null,"abstract":"<div><div>Heart failure with preserved ejection fraction (HFpEF) is characterized by diastolic dysfunction and myocardial stiffness, with limited treatment options due to the unclear molecular mechanisms underlying the disease. In this study, we investigate the role of S100A9, an inflammatory mediator, in regulating mitochondrial dynamics in HFpEF. Using “two-hit” (high-fat diet and L-NAME) and db/db mouse models, we show that S100A9 is significantly elevated in both cardiac tissue and serum, correlating with impaired diastolic function, cardiac hypertrophy, and increased oxidative stress. Inhibition of S100A9 with Paquinimod (PAQ) improved diastolic function, reduced cardiac hypertrophy, and decreased S100A9-positive macrophage infiltration, while preventing M1 macrophage polarization. In vitro, S100A9 secreted by palmitic acid-stimulated RAW 264.7 macrophages promoted mitochondrial fission in AC16 cardiomyocytes by increasing p-Drp1 and Fis1 expression, similar to the effects observed with recombinant S100A9. Excessive mitochondrial fission, regulated by S100A9, is a key factor in HFpEF progression. Transcriptomic analysis revealed significant upregulation of pyruvate dehydrogenase kinase 4 (PDK4) in HFpEF mice. Mechanistically, S100A9 induced PDK4 expression via SPI1-mediated transcription, exacerbating oxidative stress and mitochondrial fragmentation. PAQ treatment or silencing PDK4/SPI1 in AC16 cells reversed these effects, restoring ATP levels and stabilizing mitochondrial membrane potential. Cardiomyocyte-specific PDK4 knockdown in vivo further ameliorated HFpEF progression without affecting systolic function. These findings highlight S100A9 inhibition as a promising therapeutic strategy for HFpEF by targeting mitochondrial dysfunction through the S100A9/SPI1/PDK4 axis.</div></div>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":"163 ","pages":"Article 115280"},"PeriodicalIF":4.7000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567576925012706","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Heart failure with preserved ejection fraction (HFpEF) is characterized by diastolic dysfunction and myocardial stiffness, with limited treatment options due to the unclear molecular mechanisms underlying the disease. In this study, we investigate the role of S100A9, an inflammatory mediator, in regulating mitochondrial dynamics in HFpEF. Using “two-hit” (high-fat diet and L-NAME) and db/db mouse models, we show that S100A9 is significantly elevated in both cardiac tissue and serum, correlating with impaired diastolic function, cardiac hypertrophy, and increased oxidative stress. Inhibition of S100A9 with Paquinimod (PAQ) improved diastolic function, reduced cardiac hypertrophy, and decreased S100A9-positive macrophage infiltration, while preventing M1 macrophage polarization. In vitro, S100A9 secreted by palmitic acid-stimulated RAW 264.7 macrophages promoted mitochondrial fission in AC16 cardiomyocytes by increasing p-Drp1 and Fis1 expression, similar to the effects observed with recombinant S100A9. Excessive mitochondrial fission, regulated by S100A9, is a key factor in HFpEF progression. Transcriptomic analysis revealed significant upregulation of pyruvate dehydrogenase kinase 4 (PDK4) in HFpEF mice. Mechanistically, S100A9 induced PDK4 expression via SPI1-mediated transcription, exacerbating oxidative stress and mitochondrial fragmentation. PAQ treatment or silencing PDK4/SPI1 in AC16 cells reversed these effects, restoring ATP levels and stabilizing mitochondrial membrane potential. Cardiomyocyte-specific PDK4 knockdown in vivo further ameliorated HFpEF progression without affecting systolic function. These findings highlight S100A9 inhibition as a promising therapeutic strategy for HFpEF by targeting mitochondrial dysfunction through the S100A9/SPI1/PDK4 axis.
期刊介绍:
International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome.
The subject material appropriate for submission includes:
• Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders.
• Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state.
• Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses.
• Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action.
• Agents that activate genes or modify transcription and translation within the immune response.
• Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active.
• Production, function and regulation of cytokines and their receptors.
• Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.