Event-triggered tube-based model predictive anti-rollover control for liquid tank trucks considering time-varying parameters

IF 5.4 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Weihe Liang, Ruoyan Wang, Chunyan Wang, Wanzhong Zhao, Zhongkai Luan, Qikang Meng
{"title":"Event-triggered tube-based model predictive anti-rollover control for liquid tank trucks considering time-varying parameters","authors":"Weihe Liang,&nbsp;Ruoyan Wang,&nbsp;Chunyan Wang,&nbsp;Wanzhong Zhao,&nbsp;Zhongkai Luan,&nbsp;Qikang Meng","doi":"10.1016/j.conengprac.2025.106499","DOIUrl":null,"url":null,"abstract":"<div><div>Liquid tank trucks, primarily used for transporting hazardous chemicals, pose a high rollover risk due to the coupled dynamics of sloshing liquid and vehicle motion, and their rollover incidents can lead to severe safety hazards. The liquid sloshing introduces time-varying parameters that challenge the design of anti-rollover controllers. In response to this, this paper proposes an event-triggered, tube-based model predictive anti-rollover control strategy for liquid tank trucks that accounts for time-varying parameters. Firstly, to capture the time-varying characteristics resulting from liquid sloshing, this paper establishes a linear parameter-varying model. After analyzing the influence of liquid sloshing and time-varying parameters on rollover, a time-varying rollover index of the liquid tank truck is obtained using a parameter-state joint estimator for estimating difficult-to-obtain states and time-varying parameters. Then, this paper proposes a tube-based model predictive anti-rollover control strategy, which enhances the robustness of the control strategy to time-varying parameters in liquid tank trucks by incorporating system time-varying parameters within the tube. Furthermore, due to the limited bandwidth of the chassis CAN communication, an event-triggered mechanism is introduced to reduce communication resource consumption. Finally, this paper developed a hardware-in-the-loop anti-rollover test platform to validate the proposed strategy. The test results demonstrate that, under the proposed control strategy, the rollover angle of the liquid tank truck decreased by 35 %, and the lateral acceleration was reduced by 50 %. Additionally, the communication resource occupancy decreased by 39 %. The proposed anti-rollover control strategy effectively reduces the rollover risk and enhances the driving safety of liquid tank trucks.</div></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"164 ","pages":"Article 106499"},"PeriodicalIF":5.4000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066125002618","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Liquid tank trucks, primarily used for transporting hazardous chemicals, pose a high rollover risk due to the coupled dynamics of sloshing liquid and vehicle motion, and their rollover incidents can lead to severe safety hazards. The liquid sloshing introduces time-varying parameters that challenge the design of anti-rollover controllers. In response to this, this paper proposes an event-triggered, tube-based model predictive anti-rollover control strategy for liquid tank trucks that accounts for time-varying parameters. Firstly, to capture the time-varying characteristics resulting from liquid sloshing, this paper establishes a linear parameter-varying model. After analyzing the influence of liquid sloshing and time-varying parameters on rollover, a time-varying rollover index of the liquid tank truck is obtained using a parameter-state joint estimator for estimating difficult-to-obtain states and time-varying parameters. Then, this paper proposes a tube-based model predictive anti-rollover control strategy, which enhances the robustness of the control strategy to time-varying parameters in liquid tank trucks by incorporating system time-varying parameters within the tube. Furthermore, due to the limited bandwidth of the chassis CAN communication, an event-triggered mechanism is introduced to reduce communication resource consumption. Finally, this paper developed a hardware-in-the-loop anti-rollover test platform to validate the proposed strategy. The test results demonstrate that, under the proposed control strategy, the rollover angle of the liquid tank truck decreased by 35 %, and the lateral acceleration was reduced by 50 %. Additionally, the communication resource occupancy decreased by 39 %. The proposed anti-rollover control strategy effectively reduces the rollover risk and enhances the driving safety of liquid tank trucks.
考虑时变参数的基于事件触发管的液罐车模型预测防侧翻控制
液体罐车主要用于运输危险化学品,由于晃动的液体和车辆运动的耦合动力学,具有很高的侧翻风险,其侧翻事故可能导致严重的安全隐患。液体晃动引入时变参数,对防侧翻控制器的设计提出了挑战。针对这一问题,本文提出了一种考虑时变参数的事件触发、基于管的模型预测液罐车防侧翻控制策略。首先,为了捕捉液体晃动引起的时变特性,本文建立了线性参数变模型。在分析了液体晃动和时变参数对车辆侧翻的影响后,采用参数-状态联合估计方法对难以获得的状态和时变参数进行估计,得到了液罐车的时变侧翻指标。在此基础上,提出了一种基于管道的模型预测防侧翻控制策略,通过引入管道内的系统时变参数,增强了控制策略对液罐车时变参数的鲁棒性。此外,由于机箱CAN通信带宽有限,引入了事件触发机制以减少通信资源的消耗。最后,本文开发了一个硬件在环抗侧翻测试平台来验证所提出的策略。试验结果表明,在该控制策略下,液体罐车的侧翻角减小了35%,横向加速度减小了50%。此外,通信资源占用率下降了39%。所提出的防侧翻控制策略有效降低了液罐车的侧翻风险,提高了液罐车的行驶安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Control Engineering Practice
Control Engineering Practice 工程技术-工程:电子与电气
CiteScore
9.20
自引率
12.20%
发文量
183
审稿时长
44 days
期刊介绍: Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper. The scope of Control Engineering Practice matches the activities of IFAC. Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信