{"title":"Event-triggered tube-based model predictive anti-rollover control for liquid tank trucks considering time-varying parameters","authors":"Weihe Liang, Ruoyan Wang, Chunyan Wang, Wanzhong Zhao, Zhongkai Luan, Qikang Meng","doi":"10.1016/j.conengprac.2025.106499","DOIUrl":null,"url":null,"abstract":"<div><div>Liquid tank trucks, primarily used for transporting hazardous chemicals, pose a high rollover risk due to the coupled dynamics of sloshing liquid and vehicle motion, and their rollover incidents can lead to severe safety hazards. The liquid sloshing introduces time-varying parameters that challenge the design of anti-rollover controllers. In response to this, this paper proposes an event-triggered, tube-based model predictive anti-rollover control strategy for liquid tank trucks that accounts for time-varying parameters. Firstly, to capture the time-varying characteristics resulting from liquid sloshing, this paper establishes a linear parameter-varying model. After analyzing the influence of liquid sloshing and time-varying parameters on rollover, a time-varying rollover index of the liquid tank truck is obtained using a parameter-state joint estimator for estimating difficult-to-obtain states and time-varying parameters. Then, this paper proposes a tube-based model predictive anti-rollover control strategy, which enhances the robustness of the control strategy to time-varying parameters in liquid tank trucks by incorporating system time-varying parameters within the tube. Furthermore, due to the limited bandwidth of the chassis CAN communication, an event-triggered mechanism is introduced to reduce communication resource consumption. Finally, this paper developed a hardware-in-the-loop anti-rollover test platform to validate the proposed strategy. The test results demonstrate that, under the proposed control strategy, the rollover angle of the liquid tank truck decreased by 35 %, and the lateral acceleration was reduced by 50 %. Additionally, the communication resource occupancy decreased by 39 %. The proposed anti-rollover control strategy effectively reduces the rollover risk and enhances the driving safety of liquid tank trucks.</div></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"164 ","pages":"Article 106499"},"PeriodicalIF":5.4000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066125002618","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Liquid tank trucks, primarily used for transporting hazardous chemicals, pose a high rollover risk due to the coupled dynamics of sloshing liquid and vehicle motion, and their rollover incidents can lead to severe safety hazards. The liquid sloshing introduces time-varying parameters that challenge the design of anti-rollover controllers. In response to this, this paper proposes an event-triggered, tube-based model predictive anti-rollover control strategy for liquid tank trucks that accounts for time-varying parameters. Firstly, to capture the time-varying characteristics resulting from liquid sloshing, this paper establishes a linear parameter-varying model. After analyzing the influence of liquid sloshing and time-varying parameters on rollover, a time-varying rollover index of the liquid tank truck is obtained using a parameter-state joint estimator for estimating difficult-to-obtain states and time-varying parameters. Then, this paper proposes a tube-based model predictive anti-rollover control strategy, which enhances the robustness of the control strategy to time-varying parameters in liquid tank trucks by incorporating system time-varying parameters within the tube. Furthermore, due to the limited bandwidth of the chassis CAN communication, an event-triggered mechanism is introduced to reduce communication resource consumption. Finally, this paper developed a hardware-in-the-loop anti-rollover test platform to validate the proposed strategy. The test results demonstrate that, under the proposed control strategy, the rollover angle of the liquid tank truck decreased by 35 %, and the lateral acceleration was reduced by 50 %. Additionally, the communication resource occupancy decreased by 39 %. The proposed anti-rollover control strategy effectively reduces the rollover risk and enhances the driving safety of liquid tank trucks.
期刊介绍:
Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper.
The scope of Control Engineering Practice matches the activities of IFAC.
Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.