Size-directed preparation of chitosan-carrageenan nanoparticles using dynamic light scattering for sustainable materials development

Carlo S. Emolaga , Lumen C. Milo , Blessie A. Basilia
{"title":"Size-directed preparation of chitosan-carrageenan nanoparticles using dynamic light scattering for sustainable materials development","authors":"Carlo S. Emolaga ,&nbsp;Lumen C. Milo ,&nbsp;Blessie A. Basilia","doi":"10.1016/j.scowo.2025.100091","DOIUrl":null,"url":null,"abstract":"<div><div>The sustainable development of biopolymer-based nanoparticles using marine wastes and algal polysaccharides can significantly push the advancement of green chemistry and nanotechnology by reducing waste and using safer chemicals. This study uses a dynamic light scattering (DLS)-guided sequential approach for optimizing chitosan-carrageenan nanoparticles to produce a sustainable nanocarrier while minimizing reliance on the traditional trial-and-error methods. By adopting a systematic approach, this study ensures that the nanoparticles achieve the desired properties while minimizing waste in the production process. Chitosan is a biopolymer derived from crustacean waste while carrageenan can be extracted from seaweeds, an abundant marine resource. These raw materials can be used as encapsulating materials to address the limitations of bioactive compounds in drug delivery and other applications. The process involves selecting the appropriate chitosan molecular weight, carrageenan type, chitosan: carrageenan ratio, crosslinker type, and crosslinker concentration. The four-step formulation process identified a 5:1:1:3 ratio of low molecular weight chitosan, κ-carrageenan, sodium tripolyphosphate (STPP), and calcium chloride (CaCl₂) as optimal, yielding nanoparticles with a hydrodynamic diameter of approximately 350 nm as measured by DLS. FTIR analysis confirmed successful chitosan–carrageenan nanoparticle formation, while AFM and TEM imaging revealed loosely aggregated particles with average sizes of ∼150 nm in AFM and below 100 nm in TEM. This biopolymer-based nanoparticle can have applications in drug delivery, active packaging, and other related industries while supporting multiple Sustainable Development Goals (SDGs 2, 3, 6, and 12) and contributes to waste reduction and the advancement of eco-friendly materials science.</div></div>","PeriodicalId":101197,"journal":{"name":"Sustainable Chemistry One World","volume":"7 ","pages":"Article 100091"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Chemistry One World","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950357425000484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The sustainable development of biopolymer-based nanoparticles using marine wastes and algal polysaccharides can significantly push the advancement of green chemistry and nanotechnology by reducing waste and using safer chemicals. This study uses a dynamic light scattering (DLS)-guided sequential approach for optimizing chitosan-carrageenan nanoparticles to produce a sustainable nanocarrier while minimizing reliance on the traditional trial-and-error methods. By adopting a systematic approach, this study ensures that the nanoparticles achieve the desired properties while minimizing waste in the production process. Chitosan is a biopolymer derived from crustacean waste while carrageenan can be extracted from seaweeds, an abundant marine resource. These raw materials can be used as encapsulating materials to address the limitations of bioactive compounds in drug delivery and other applications. The process involves selecting the appropriate chitosan molecular weight, carrageenan type, chitosan: carrageenan ratio, crosslinker type, and crosslinker concentration. The four-step formulation process identified a 5:1:1:3 ratio of low molecular weight chitosan, κ-carrageenan, sodium tripolyphosphate (STPP), and calcium chloride (CaCl₂) as optimal, yielding nanoparticles with a hydrodynamic diameter of approximately 350 nm as measured by DLS. FTIR analysis confirmed successful chitosan–carrageenan nanoparticle formation, while AFM and TEM imaging revealed loosely aggregated particles with average sizes of ∼150 nm in AFM and below 100 nm in TEM. This biopolymer-based nanoparticle can have applications in drug delivery, active packaging, and other related industries while supporting multiple Sustainable Development Goals (SDGs 2, 3, 6, and 12) and contributes to waste reduction and the advancement of eco-friendly materials science.
利用动态光散射定向制备壳聚糖-卡拉胶纳米颗粒用于可持续材料的开发
利用海洋废弃物和藻类多糖可持续开发生物聚合物纳米粒子,可以通过减少废弃物和使用更安全的化学品,极大地推动绿色化学和纳米技术的进步。本研究采用动态光散射(DLS)引导的顺序方法来优化壳聚糖-卡拉胶纳米颗粒,以产生可持续的纳米载体,同时最大限度地减少对传统试错方法的依赖。通过采用系统的方法,本研究确保纳米颗粒达到所需的性能,同时最大限度地减少生产过程中的浪费。壳聚糖是一种从甲壳类动物废弃物中提取的生物聚合物,而卡拉胶可从海洋资源丰富的海藻中提取。这些原料可以用作包封材料,以解决生物活性化合物在药物输送和其他应用中的局限性。该工艺包括选择合适的壳聚糖分子量、卡拉胶类型、壳聚糖与卡拉胶比、交联剂类型和交联剂浓度。通过四步制备工艺,确定了低分子量壳聚糖、κ-卡拉胶、三聚磷酸钠(STPP)和氯化钙(氯化钙2)的比例为5:1:1:3为最佳配比,得到的纳米颗粒水动力直径约为350 nm (DLS测量)。FTIR分析证实壳聚糖-卡拉胶纳米颗粒成功形成,而AFM和TEM成像显示松散聚集的颗粒,AFM平均尺寸为~ 150 nm, TEM小于100 nm。这种基于生物聚合物的纳米颗粒可以应用于药物输送、活性包装和其他相关行业,同时支持多个可持续发展目标(可持续发展目标2、3、6和12),并有助于减少废物和推进环保材料科学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信