Properties of CD8 T-cell-recognized neoantigens in different tumor types

S.L.C. Ketelaars , M.M. van Buuren , A. Gangaev , N. van Rooij , S. Patiwael , K. Hoefakker , L.F. Fanchi , P. Baas , M. van der Heijden , M. Kok , T.N. Schumacher , P. Kvistborg , J.B.A.G. Haanen
{"title":"Properties of CD8 T-cell-recognized neoantigens in different tumor types","authors":"S.L.C. Ketelaars ,&nbsp;M.M. van Buuren ,&nbsp;A. Gangaev ,&nbsp;N. van Rooij ,&nbsp;S. Patiwael ,&nbsp;K. Hoefakker ,&nbsp;L.F. Fanchi ,&nbsp;P. Baas ,&nbsp;M. van der Heijden ,&nbsp;M. Kok ,&nbsp;T.N. Schumacher ,&nbsp;P. Kvistborg ,&nbsp;J.B.A.G. Haanen","doi":"10.1016/j.iotech.2025.101062","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Neoantigen-based immunotherapies rely on computational tools predicting peptide immunogenicity based on properties such as its expression level, binding affinity to human leukocyte antigen (HLA), likelihood of proteasomal cleavage and dissimilarity from wild-type peptide. However, current datasets are scarce and limited to highly mutated tumor types such as melanoma and lung cancer, leaving uncertainty about the value of these properties in other tumor types.</div></div><div><h3>Materials and methods</h3><div>To investigate this, we retrospectively analyzed the properties of immunogenic neoantigens identified in CD8 T-cell recognition screens of predicted neoantigens in tumor-infiltrating lymphocytes (TILs) from 12 melanoma patients and peripheral blood mononuclear cells (PBMCs) from 14 patients with mesothelioma, triple-negative breast cancer or urothelial cancer. In both experimental settings, CD8 T-cell recognition was assessed using a combinatorial peptide-HLA (pHLA) multimer-based technology.</div></div><div><h3>Results</h3><div>CD8 T-cell responses were detected against in total 34 of the 8103 predicted neoantigens (0.4%). In both PBMCs and TILs, the eluted ligand (EL) score—the predicted likelihood of a pHLA being presented on the cell surface—was the strongest predictor of immunogenicity, followed by predicted HLA binding affinity. Moreover, in the TILs, the frequency of neoantigen-specific CD8 T cells was strongly correlated with these properties across the 12 patients.</div></div><div><h3>Conclusions</h3><div>These findings underscore the value of both EL score and HLA binding affinity as key predictors of neoantigen immunogenicity in different tumor types. Furthermore, we demonstrate for the first time an immunodominance hierarchy of neoantigen-specific CD8 T-cell responses across patients in <em>ex vivo</em> expanded TIL cultures.</div></div>","PeriodicalId":73352,"journal":{"name":"Immuno-oncology technology","volume":"27 ","pages":"Article 101062"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immuno-oncology technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259001882500022X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Neoantigen-based immunotherapies rely on computational tools predicting peptide immunogenicity based on properties such as its expression level, binding affinity to human leukocyte antigen (HLA), likelihood of proteasomal cleavage and dissimilarity from wild-type peptide. However, current datasets are scarce and limited to highly mutated tumor types such as melanoma and lung cancer, leaving uncertainty about the value of these properties in other tumor types.

Materials and methods

To investigate this, we retrospectively analyzed the properties of immunogenic neoantigens identified in CD8 T-cell recognition screens of predicted neoantigens in tumor-infiltrating lymphocytes (TILs) from 12 melanoma patients and peripheral blood mononuclear cells (PBMCs) from 14 patients with mesothelioma, triple-negative breast cancer or urothelial cancer. In both experimental settings, CD8 T-cell recognition was assessed using a combinatorial peptide-HLA (pHLA) multimer-based technology.

Results

CD8 T-cell responses were detected against in total 34 of the 8103 predicted neoantigens (0.4%). In both PBMCs and TILs, the eluted ligand (EL) score—the predicted likelihood of a pHLA being presented on the cell surface—was the strongest predictor of immunogenicity, followed by predicted HLA binding affinity. Moreover, in the TILs, the frequency of neoantigen-specific CD8 T cells was strongly correlated with these properties across the 12 patients.

Conclusions

These findings underscore the value of both EL score and HLA binding affinity as key predictors of neoantigen immunogenicity in different tumor types. Furthermore, we demonstrate for the first time an immunodominance hierarchy of neoantigen-specific CD8 T-cell responses across patients in ex vivo expanded TIL cultures.
CD8 t细胞识别的新抗原在不同肿瘤类型中的特性
基于新抗原的免疫疗法依赖于计算工具来预测肽的免疫原性,这些特性基于肽的表达水平、与人白细胞抗原(HLA)的结合亲和力、蛋白酶体切割的可能性以及与野生型肽的不同之处。然而,目前的数据集很少,而且仅限于高度突变的肿瘤类型,如黑色素瘤和肺癌,这使得这些特性在其他肿瘤类型中的价值不确定。为了研究这一点,我们回顾性分析了在12例黑色素瘤患者的肿瘤浸润淋巴细胞(til)和14例间皮瘤、三阴性乳腺癌或尿路上皮癌患者的外周血单个核细胞(PBMCs)的CD8 t细胞识别中发现的免疫原性新抗原的特性。在这两个实验环境中,使用组合肽- hla (pHLA)多基技术评估CD8 t细胞识别。结果8103种预测新抗原中,scd8 t细胞应答34种(0.4%)。在pbmc和TILs中,洗脱配体(EL)评分-预测pHLA出现在细胞表面的可能性-是免疫原性的最强预测因子,其次是预测HLA结合亲和力。此外,在TILs中,新抗原特异性CD8 T细胞的频率与12名患者的这些特性密切相关。结论EL评分和HLA结合亲和力作为新抗原免疫原性在不同肿瘤类型中的重要预测指标。此外,我们首次在体外扩展TIL培养中证明了患者中新抗原特异性CD8 t细胞反应的免疫优势等级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信