A soft sensor net based on the symplectic decomposition-global attention reconstruction architecture for biopharmaceutical industry

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Simengxu Qiao, Yichen Song, Qunshan He, Shifan Chen, He Zhang, Xinggao Liu
{"title":"A soft sensor net based on the symplectic decomposition-global attention reconstruction architecture for biopharmaceutical industry","authors":"Simengxu Qiao,&nbsp;Yichen Song,&nbsp;Qunshan He,&nbsp;Shifan Chen,&nbsp;He Zhang,&nbsp;Xinggao Liu","doi":"10.1016/j.asoc.2025.113636","DOIUrl":null,"url":null,"abstract":"<div><div>Non-linearity, time-varying properties, and high noise levels in biopharmaceutical process data have been recognized as critical factors affecting the accuracy of data-driven soft sensors. To address these issues and enhance prediction precision, we introduce BPSN, an innovative soft sensor framework grounded in the symplectic decomposition-global attention reconstruction architecture. Symplectic geometry mode decomposition effectively adapts to data complexity and reduces noise. A reconstruction module combines global attention mechanism and reversible instance normalization to enhance sharp signal features via Manhattan distance while addressing internal drift. Experiments show that the proposed soft sensor model outperforms state-of-the-art models in predicting key indicators: bacterial concentration, viscosity, and reducing sugar content in the erythromycin fermentation process. This illustrates its practical applicability and exceptional performance in biopharmaceutical industry. The source code is available at: <span><span>https://github.com/Joss0623/BioPharmaSoftNet.git</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"183 ","pages":"Article 113636"},"PeriodicalIF":7.2000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494625009470","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Non-linearity, time-varying properties, and high noise levels in biopharmaceutical process data have been recognized as critical factors affecting the accuracy of data-driven soft sensors. To address these issues and enhance prediction precision, we introduce BPSN, an innovative soft sensor framework grounded in the symplectic decomposition-global attention reconstruction architecture. Symplectic geometry mode decomposition effectively adapts to data complexity and reduces noise. A reconstruction module combines global attention mechanism and reversible instance normalization to enhance sharp signal features via Manhattan distance while addressing internal drift. Experiments show that the proposed soft sensor model outperforms state-of-the-art models in predicting key indicators: bacterial concentration, viscosity, and reducing sugar content in the erythromycin fermentation process. This illustrates its practical applicability and exceptional performance in biopharmaceutical industry. The source code is available at: https://github.com/Joss0623/BioPharmaSoftNet.git.
生物制药行业基于辛分解-全局注意力重构体系结构的软传感器网络
生物制药过程数据中的非线性、时变特性和高噪声水平已被认为是影响数据驱动软传感器精度的关键因素。为了解决这些问题并提高预测精度,我们引入了一种基于辛分解-全局注意力重建架构的创新软传感器框架BPSN。辛几何模态分解有效地适应了数据的复杂性,降低了噪声。重建模块结合了全局注意机制和可逆实例归一化,通过曼哈顿距离增强信号特征,同时解决内部漂移。实验表明,所提出的软传感器模型在预测红霉素发酵过程中的细菌浓度、粘度和还原糖含量等关键指标方面优于现有的模型。这说明了它在生物制药行业的实用性和卓越性能。源代码可从https://github.com/Joss0623/BioPharmaSoftNet.git获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Soft Computing
Applied Soft Computing 工程技术-计算机:跨学科应用
CiteScore
15.80
自引率
6.90%
发文量
874
审稿时长
10.9 months
期刊介绍: Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities. Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信