Aliakbar Ghaderiaram, Erik Schlangen, Mohammad Fotouhi
{"title":"Piezoelectric sensor characterization in buckling mode for structural dynamic strain measurements","authors":"Aliakbar Ghaderiaram, Erik Schlangen, Mohammad Fotouhi","doi":"10.1016/j.snr.2025.100362","DOIUrl":null,"url":null,"abstract":"<div><div>The buckling mode in piezoelectric materials offers advantages such as an increased measurable strain range, ease of installation, and extended service life. This paper investigates the potential of piezoelectric sensors operating in buckling mode for structural strain measurement by evaluating key factors including boundary conditions, sensor response linearity under dynamic loading, and impedance engineering to optimize the voltage–strain relationship. A structural extension was developed to facilitate sensor integration and to enable the application of different buckling boundary conditions. Results show that the clamped–clamped configuration generated at least 1.65 times higher output voltage, and three times greater peak strain compared to other boundary conditions. An experimentally validated analytical model was employed to assess and improve the performance of buckled piezoelectric sensors in dynamic environments. The findings highlight that introducing initial buckling reduces signal perturbations, enhances voltage linearity across loading frequencies, and extends the effective strain measurement range. Furthermore, impedance engineering was used to successfully mitigate the nonlinear effects of transient response, thereby improving signal stability and accuracy in dynamic strain monitoring applications.</div></div>","PeriodicalId":426,"journal":{"name":"Sensors and Actuators Reports","volume":"10 ","pages":"Article 100362"},"PeriodicalIF":7.6000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666053925000803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The buckling mode in piezoelectric materials offers advantages such as an increased measurable strain range, ease of installation, and extended service life. This paper investigates the potential of piezoelectric sensors operating in buckling mode for structural strain measurement by evaluating key factors including boundary conditions, sensor response linearity under dynamic loading, and impedance engineering to optimize the voltage–strain relationship. A structural extension was developed to facilitate sensor integration and to enable the application of different buckling boundary conditions. Results show that the clamped–clamped configuration generated at least 1.65 times higher output voltage, and three times greater peak strain compared to other boundary conditions. An experimentally validated analytical model was employed to assess and improve the performance of buckled piezoelectric sensors in dynamic environments. The findings highlight that introducing initial buckling reduces signal perturbations, enhances voltage linearity across loading frequencies, and extends the effective strain measurement range. Furthermore, impedance engineering was used to successfully mitigate the nonlinear effects of transient response, thereby improving signal stability and accuracy in dynamic strain monitoring applications.
期刊介绍:
Sensors and Actuators Reports is a peer-reviewed open access journal launched out from the Sensors and Actuators journal family. Sensors and Actuators Reports is dedicated to publishing new and original works in the field of all type of sensors and actuators, including bio-, chemical-, physical-, and nano- sensors and actuators, which demonstrates significant progress beyond the current state of the art. The journal regularly publishes original research papers, reviews, and short communications.
For research papers and short communications, the journal aims to publish the new and original work supported by experimental results and as such purely theoretical works are not accepted.