Enhancing change detection in multi-date images using a Multi-temporal Siamese Neural Network

IF 3.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Farah Chouikhi , Ali Ben Abbes , Imed Riadh Farah
{"title":"Enhancing change detection in multi-date images using a Multi-temporal Siamese Neural Network","authors":"Farah Chouikhi ,&nbsp;Ali Ben Abbes ,&nbsp;Imed Riadh Farah","doi":"10.1016/j.patrec.2025.07.010","DOIUrl":null,"url":null,"abstract":"<div><div>Satellite imagery’s temporal and spatial variability presents challenges for accurate change detection. To address this challenge, we propose a Multi-temporal Siamese Variational Auto-Encoder (MSVAE). MSVAE obtains latent representations by concatenating extracted features from multi-date images while sharing weights. This architecture combines the advantages of Siamese networks and variational auto-encoders (VAE), ensuring both spatial and temporal consistency of the extracted features for desertification detection. We conducted experiments in the arid regions of Tunisia using Landsat imagery and supervised classification techniques for desertification detection. The results demonstrated a classification accuracy of 98.46% for the proposed MSVAE, outperforming other models, such as the Multi-temporal Siamese Convolutional Neural Network (MSCNN) and the Multi-temporal Siamese Recurrent Neural Network (MSRNN).</div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"197 ","pages":"Pages 65-71"},"PeriodicalIF":3.3000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865525002624","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Satellite imagery’s temporal and spatial variability presents challenges for accurate change detection. To address this challenge, we propose a Multi-temporal Siamese Variational Auto-Encoder (MSVAE). MSVAE obtains latent representations by concatenating extracted features from multi-date images while sharing weights. This architecture combines the advantages of Siamese networks and variational auto-encoders (VAE), ensuring both spatial and temporal consistency of the extracted features for desertification detection. We conducted experiments in the arid regions of Tunisia using Landsat imagery and supervised classification techniques for desertification detection. The results demonstrated a classification accuracy of 98.46% for the proposed MSVAE, outperforming other models, such as the Multi-temporal Siamese Convolutional Neural Network (MSCNN) and the Multi-temporal Siamese Recurrent Neural Network (MSRNN).
利用多时相连体神经网络增强多日期图像的变化检测
卫星图像的时空变异性给准确探测变化带来了挑战。为了解决这一挑战,我们提出了一种多时间暹罗变分自动编码器(MSVAE)。MSVAE通过将多日期图像中提取的特征串在一起并共享权重来获得潜在表征。该架构结合了Siamese网络和变分自编码器(VAE)的优势,确保了提取特征在空间和时间上的一致性,用于荒漠化检测。我们利用陆地卫星图像和监督分类技术在突尼斯干旱地区进行了荒漠化检测实验。结果表明,所提出的MSVAE的分类准确率为98.46%,优于其他模型,如多时相暹罗卷积神经网络(MSCNN)和多时相暹罗递归神经网络(MSRNN)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pattern Recognition Letters
Pattern Recognition Letters 工程技术-计算机:人工智能
CiteScore
12.40
自引率
5.90%
发文量
287
审稿时长
9.1 months
期刊介绍: Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信