{"title":"Design of an atmospheric muon tomographer for material identification based on CORSIKA+ GEANT4 simulations","authors":"J.A. Rengifo, J.L. Bazo","doi":"10.1016/j.nima.2025.170819","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, muon tomography has appeared as a powerful and innovative technique for non-invasive imaging of both large and small structures, with applications in different fields such as geology, archeology and security. This study presents the design and simulation of a portable, easy-to-construct detector based on plastic scintillators and silicon photomultipliers using current technology. The cosmic ray flux reaching the Earth’s atmosphere was input to CORSIKA to simulate atmospheric muons and other secondary particles at ground level. The detector and the target object geometry and materials were simulated using GEANT4, transporting the previously generated muon flux. Two muon tomography methods, based on data on muon absorption or scattering, were employed to distinguish objects composed of different materials. Statistical differences were quantified for various object sizes and materials. Using a 3 <span><math><mi>σ</mi></math></span> threshold in the first method, it was determined that objects made of lead can be distinguished from those made of other materials. The observation times required to differentiate an object made of lead from one made of aluminum were <span><math><mrow><mn>1</mn><mo>.</mo><mn>3</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>2</mn></mrow></math></span> days and <span><math><mrow><mn>9</mn><mo>.</mo><mn>4</mn><mo>±</mo><mn>3</mn><mo>.</mo><mn>7</mn></mrow></math></span> days for the first and second methods, respectively.</div></div>","PeriodicalId":19359,"journal":{"name":"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment","volume":"1081 ","pages":"Article 170819"},"PeriodicalIF":1.4000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168900225006205","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, muon tomography has appeared as a powerful and innovative technique for non-invasive imaging of both large and small structures, with applications in different fields such as geology, archeology and security. This study presents the design and simulation of a portable, easy-to-construct detector based on plastic scintillators and silicon photomultipliers using current technology. The cosmic ray flux reaching the Earth’s atmosphere was input to CORSIKA to simulate atmospheric muons and other secondary particles at ground level. The detector and the target object geometry and materials were simulated using GEANT4, transporting the previously generated muon flux. Two muon tomography methods, based on data on muon absorption or scattering, were employed to distinguish objects composed of different materials. Statistical differences were quantified for various object sizes and materials. Using a 3 threshold in the first method, it was determined that objects made of lead can be distinguished from those made of other materials. The observation times required to differentiate an object made of lead from one made of aluminum were days and days for the first and second methods, respectively.
期刊介绍:
Section A of Nuclear Instruments and Methods in Physics Research publishes papers on design, manufacturing and performance of scientific instruments with an emphasis on large scale facilities. This includes the development of particle accelerators, ion sources, beam transport systems and target arrangements as well as the use of secondary phenomena such as synchrotron radiation and free electron lasers. It also includes all types of instrumentation for the detection and spectrometry of radiations from high energy processes and nuclear decays, as well as instrumentation for experiments at nuclear reactors. Specialized electronics for nuclear and other types of spectrometry as well as computerization of measurements and control systems in this area also find their place in the A section.
Theoretical as well as experimental papers are accepted.