Andrea C. Murillo-Cisneros , Ramón Gaxiola-Robles , Claudia J. Camacho-Hernández , Martha Reyes-Becerril , Orlando Lugo-Lugo , Tania Zenteno-Savín
{"title":"Transfection with SV40 LT promotes oxidative damage in primary cultures of California sea lion muscle cells","authors":"Andrea C. Murillo-Cisneros , Ramón Gaxiola-Robles , Claudia J. Camacho-Hernández , Martha Reyes-Becerril , Orlando Lugo-Lugo , Tania Zenteno-Savín","doi":"10.1016/j.cbpb.2025.111138","DOIUrl":null,"url":null,"abstract":"<div><div>Developing immortalized cell lines could significantly accelerate studies on marine mammal adaptations to breath-hold diving, ischemia/reperfusion cycles and oxidative stress. In this study, skeletal muscle-derived cells from California sea lions (<em>Zalophus californianus</em>) were transfected with simian virus 40 large T antigen (SV40 LT), a viral oncoprotein known to inactivate cell cycle regulators such as p53 and retinoblastoma (pRB). Although transfection and puromycin selection were successful, transfected cells exhibited morphological abnormalities and reduced viability, suggesting altered cellular proliferation pathways. Significantly higher superoxide dismutase (SOD) and glutathione S-transferase (GST) activities (2- and 6.1-fold, respectively), higher protein oxidative damage (3.9-fold), and lower catalase (CAT) activity (6.9-fold) were observed in transfected cells relative to control (untransfected) cells. These findings suggest that peroxide (H₂O₂) accumulation, likely triggered by genotoxic stress, disrupted cellular proliferation and/or cell death pathways in SV40 LT-transfected skeletal muscle-derived cells from California sea lions. Future studies should consider co-transfection with human telomerase reverse transcriptase (hTERT) and the use of lentiviral delivery systems to enhance transfection efficiency, reduce genotoxic effects, and improve culture stability. This study highlights current challenges and offers potential solutions for generating immortalized marine mammal cell lines.</div></div>","PeriodicalId":55236,"journal":{"name":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","volume":"280 ","pages":"Article 111138"},"PeriodicalIF":1.8000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096495925000697","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Developing immortalized cell lines could significantly accelerate studies on marine mammal adaptations to breath-hold diving, ischemia/reperfusion cycles and oxidative stress. In this study, skeletal muscle-derived cells from California sea lions (Zalophus californianus) were transfected with simian virus 40 large T antigen (SV40 LT), a viral oncoprotein known to inactivate cell cycle regulators such as p53 and retinoblastoma (pRB). Although transfection and puromycin selection were successful, transfected cells exhibited morphological abnormalities and reduced viability, suggesting altered cellular proliferation pathways. Significantly higher superoxide dismutase (SOD) and glutathione S-transferase (GST) activities (2- and 6.1-fold, respectively), higher protein oxidative damage (3.9-fold), and lower catalase (CAT) activity (6.9-fold) were observed in transfected cells relative to control (untransfected) cells. These findings suggest that peroxide (H₂O₂) accumulation, likely triggered by genotoxic stress, disrupted cellular proliferation and/or cell death pathways in SV40 LT-transfected skeletal muscle-derived cells from California sea lions. Future studies should consider co-transfection with human telomerase reverse transcriptase (hTERT) and the use of lentiviral delivery systems to enhance transfection efficiency, reduce genotoxic effects, and improve culture stability. This study highlights current challenges and offers potential solutions for generating immortalized marine mammal cell lines.
期刊介绍:
Comparative Biochemistry & Physiology (CBP) publishes papers in comparative, environmental and evolutionary physiology.
Part B: Biochemical and Molecular Biology (CBPB), focuses on biochemical physiology, primarily bioenergetics/energy metabolism, cell biology, cellular stress responses, enzymology, intermediary metabolism, macromolecular structure and function, gene regulation, evolutionary genetics. Most studies focus on biochemical or molecular analyses that have clear ramifications for physiological processes.