Customizing the elastic, thermodynamic and optical properties of Cu, Zn and Mn transition metal doped Zr2B4 ceramics: A first-principles perspective

Israt Sarmin , Kamal Hossain , Mohammad Tanvir Ahmed , Hind Adawi , H. Akther , Amun Amri , M.Mahbubur Rahman
{"title":"Customizing the elastic, thermodynamic and optical properties of Cu, Zn and Mn transition metal doped Zr2B4 ceramics: A first-principles perspective","authors":"Israt Sarmin ,&nbsp;Kamal Hossain ,&nbsp;Mohammad Tanvir Ahmed ,&nbsp;Hind Adawi ,&nbsp;H. Akther ,&nbsp;Amun Amri ,&nbsp;M.Mahbubur Rahman","doi":"10.1016/j.nxmate.2025.100942","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a first-principles-based analysis using density functional theory (DFT) to realize the impact of doping Cu, Zn and Mn transition metals on the structural, elastic, thermodynamic, and optical properties of Zr<sub>2</sub>B<sub>4</sub> ceramics. The lattice parameters of Zr<sub>2</sub>B<sub>4</sub> ceramics were altered due to the metal doping. Mulliken charge, Hirshfeld charge and bond lengths of all the ceramic structures were also significantly modified due to the dopants. The doping elements strongly influenced the bulk and shear modulus of Zr<sub>2</sub>B<sub>4</sub> ceramics. We found that Zr<sub>2</sub>B<sub>4</sub>, ZrZnB<sub>4</sub>, and ZrMnB4 are brittle, while ZrCuB<sub>4</sub> ceramic was ductile. Band gap is absent in the Fermi energy level of the parent and doped ceramics, resulting in metallic characteristics. The PDOS analysis showed that Mn-doped Zr<sub>2</sub>B<sub>4</sub> ceramics contribute most at the Fermi level of ZrMnB<sub>4</sub>, and B contributes the most to the ZrCuB<sub>4</sub> and ZrZnB<sub>4</sub> ceramics. The Debye temperature follows an ascending order of the form ZrCuB<sub>4</sub> &lt;ZrMnB<sub>4</sub> &lt;Zr<sub>2</sub>B<sub>4</sub> &lt;ZrZnB<sub>4</sub>. A maximum Debye temperature of 1244 K was observed for ZrZnB<sub>4</sub> ceramics. This makes it suitable for high-temperature applications, such as thermal protection systems, hot gas valve parts, and aero-engine components. The pristine and doped Zr<sub>2</sub>B<sub>4</sub> ceramics exhibited high optical conductivity in the lowest energy range. The highest static refractive index <em>n</em>(0) = 9.06 was recorded for ZrM<em>n</em>B<sub>4</sub> ceramics. The metallic elements Cu, Mn, and Zn are believed to be beneficial in improving the mechanical and thermodynamic properties of Zr<sub>2</sub>B<sub>4</sub> ceramics. Doping with Mn improves the ductile characteristic more than doping with Zn. Thus, Mn-doped Zr<sub>2</sub>B<sub>4</sub> can be used in the construction, automotive, aerospace, and manufacturing industries.</div></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"9 ","pages":"Article 100942"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949822825004605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a first-principles-based analysis using density functional theory (DFT) to realize the impact of doping Cu, Zn and Mn transition metals on the structural, elastic, thermodynamic, and optical properties of Zr2B4 ceramics. The lattice parameters of Zr2B4 ceramics were altered due to the metal doping. Mulliken charge, Hirshfeld charge and bond lengths of all the ceramic structures were also significantly modified due to the dopants. The doping elements strongly influenced the bulk and shear modulus of Zr2B4 ceramics. We found that Zr2B4, ZrZnB4, and ZrMnB4 are brittle, while ZrCuB4 ceramic was ductile. Band gap is absent in the Fermi energy level of the parent and doped ceramics, resulting in metallic characteristics. The PDOS analysis showed that Mn-doped Zr2B4 ceramics contribute most at the Fermi level of ZrMnB4, and B contributes the most to the ZrCuB4 and ZrZnB4 ceramics. The Debye temperature follows an ascending order of the form ZrCuB4 <ZrMnB4 <Zr2B4 <ZrZnB4. A maximum Debye temperature of 1244 K was observed for ZrZnB4 ceramics. This makes it suitable for high-temperature applications, such as thermal protection systems, hot gas valve parts, and aero-engine components. The pristine and doped Zr2B4 ceramics exhibited high optical conductivity in the lowest energy range. The highest static refractive index n(0) = 9.06 was recorded for ZrMnB4 ceramics. The metallic elements Cu, Mn, and Zn are believed to be beneficial in improving the mechanical and thermodynamic properties of Zr2B4 ceramics. Doping with Mn improves the ductile characteristic more than doping with Zn. Thus, Mn-doped Zr2B4 can be used in the construction, automotive, aerospace, and manufacturing industries.
Cu, Zn和Mn过渡金属掺杂Zr2B4陶瓷的弹性,热力学和光学性质:第一性原理视角
本研究采用密度泛函理论(DFT),基于第一性原理分析了掺杂Cu、Zn和Mn过渡金属对Zr2B4陶瓷结构、弹性、热力学和光学性能的影响。金属掺杂改变了Zr2B4陶瓷的晶格参数。所有陶瓷结构的Mulliken电荷、Hirshfeld电荷和键长也因掺杂剂的加入而发生了明显的变化。掺杂元素对Zr2B4陶瓷的体积模量和剪切模量影响较大。Zr2B4、ZrZnB4和ZrMnB4是脆性陶瓷,而ZrCuB4是延展性陶瓷。在母体和掺杂陶瓷的费米能级中没有带隙,导致金属特性。PDOS分析表明,掺杂mn的Zr2B4陶瓷在ZrMnB4费米能级贡献最大,掺杂B的ZrCuB4和ZrZnB4陶瓷在费米能级贡献最大。德拜温度为ZrCuB4 <;ZrMnB4 <Zr2B4 <ZrZnB4。ZrZnB4陶瓷的最高德拜温度为1244 K。这使得它适用于高温应用,如热保护系统,热气体阀部件和航空发动机部件。原始Zr2B4陶瓷和掺杂Zr2B4陶瓷在最低能量范围内表现出较高的光学导电性。ZrMnB4陶瓷的最高静态折射率n(0) = 9.06。金属元素Cu、Mn和Zn有利于提高Zr2B4陶瓷的力学和热力学性能。Mn的掺入比Zn的掺入更能改善合金的延展性。因此,mn掺杂的Zr2B4可以用于建筑,汽车,航空航天和制造业。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信