Local interpolation techniques for higher-order singular perturbations of non-convex functionals: Free-discontinuity problems

IF 2.3 1区 数学 Q1 MATHEMATICS
Margherita Solci
{"title":"Local interpolation techniques for higher-order singular perturbations of non-convex functionals: Free-discontinuity problems","authors":"Margherita Solci","doi":"10.1016/j.matpur.2025.103776","DOIUrl":null,"url":null,"abstract":"<div><div>We develop a general approach, using local interpolation inequalities, to non-convex integral functionals depending on the gradient with a singular perturbation by derivatives of order <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span>. When applied to functionals giving rise to free-discontinuity energies, such methods permit to change boundary values for derivatives up to order <span><math><mi>k</mi><mo>−</mo><mn>1</mn></math></span> in problems defining density functions for the jump part, thus allowing to prove optimal-profile formulas, and to deduce compactness and lower bounds. As an application, we prove that for <em>k</em>-th order perturbations of energies depending on the gradient behaving as a constant at infinity, the jump energy density is a constant <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> times the <em>k</em>-th root of the jump size. The result is first proved for truncated quadratic energy densities and in the one-dimensional case, from which the general higher-dimensional case can be obtained by slicing techniques. A wide class of non-convex energies can be studied as an envelope of these particular ones. Finally, we remark that an approximation of the Mumford–Shah functional can be obtained by letting <em>k</em> tend to infinity. We also derive a new approximation of the Blake-Zisserman functional.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"204 ","pages":"Article 103776"},"PeriodicalIF":2.3000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001205","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a general approach, using local interpolation inequalities, to non-convex integral functionals depending on the gradient with a singular perturbation by derivatives of order k2. When applied to functionals giving rise to free-discontinuity energies, such methods permit to change boundary values for derivatives up to order k1 in problems defining density functions for the jump part, thus allowing to prove optimal-profile formulas, and to deduce compactness and lower bounds. As an application, we prove that for k-th order perturbations of energies depending on the gradient behaving as a constant at infinity, the jump energy density is a constant mk times the k-th root of the jump size. The result is first proved for truncated quadratic energy densities and in the one-dimensional case, from which the general higher-dimensional case can be obtained by slicing techniques. A wide class of non-convex energies can be studied as an envelope of these particular ones. Finally, we remark that an approximation of the Mumford–Shah functional can be obtained by letting k tend to infinity. We also derive a new approximation of the Blake-Zisserman functional.
非凸泛函高阶奇异摄动的局部插值技术:自由不连续问题
我们利用局部插值不等式,给出了一种求解具有k≥2阶导数的奇异扰动梯度的非凸积分泛函的一般方法。当应用于产生自由不连续能量的泛函时,这种方法允许在定义跳跃部分密度函数的问题中改变导数的边值,最高可达k−1阶,从而允许证明最优轮廓公式,并推导紧性和下界。作为一个应用,我们证明了对于依赖于梯度的k阶能量扰动在无穷远处表现为常数,跳跃能量密度是常数mk乘以跳跃大小的k次方根。首先证明了截断的二次能量密度和一维情况下的结果,然后利用切片技术得到一般的高维情况。一类广泛的非凸能量可以作为这些特殊能量的包络来研究。最后,我们注意到一个Mumford-Shah泛函的近似可以通过让k趋于无穷而得到。我们还推导了Blake-Zisserman泛函的一个新的近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信