{"title":"Nanoparticle-encapsulated organo-magnetogels: crosslinked network for broad-spectrum pollutant removal","authors":"Sanjeevi Prasath Sridhar, Sudha Uthaman, Logesh Kumar Pandurangan, Armin Kriele, Debasish Saha, Baohu Wu, Velraj Parthiban, Janaki Vembu Murugesan, Balachandar Vijayakumar, Stephan Förster, Aurel Radulescu, Brijitta Joseph","doi":"10.1038/s41545-025-00496-w","DOIUrl":null,"url":null,"abstract":"<p>In this contribution, we report the synthesis of a poly(4-vinylpyridine)-reduced graphene oxide-magnetite (P4VP-rGO-Fe₃O₄) organo-magnetogel (OMG), designed for high-performance pollutant adsorption. In the OMG, rGO and Fe₃O₄ nanoparticles are in situ encapsulated during the chemical cross-linking of the 4-vinylpyridine polymer. The adsorption performance of OMG was evaluated using three model water pollutants, viz., organic dyes, heavy metal ions, and waterborne pathogens. The equilibrium adsorption capacity exceeded 400 mg/g for the organic dyes. Beyond dye removal, the OMG also adsorbed heavy metal ions, such as AsO<sub>2</sub><sup>−</sup>, Pb²⁺, Cr<sub>2</sub>O<sub>7</sub><sup>2−,</sup> and Cd²⁺ ions, with removal efficiencies exceeding 60% and adsorption capacities exceeding 200 mg/g. The OMG also exhibited remarkable antibacterial activity against <i>E. coli</i> and <i>S. Typhi</i>, with almost zero viability for <i>S. Typhi</i>. The OMG promises a broad-spectrum applicability in wastewater treatment, offering a sustainable and efficient solution for water decontamination.</p>","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":"21 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41545-025-00496-w","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this contribution, we report the synthesis of a poly(4-vinylpyridine)-reduced graphene oxide-magnetite (P4VP-rGO-Fe₃O₄) organo-magnetogel (OMG), designed for high-performance pollutant adsorption. In the OMG, rGO and Fe₃O₄ nanoparticles are in situ encapsulated during the chemical cross-linking of the 4-vinylpyridine polymer. The adsorption performance of OMG was evaluated using three model water pollutants, viz., organic dyes, heavy metal ions, and waterborne pathogens. The equilibrium adsorption capacity exceeded 400 mg/g for the organic dyes. Beyond dye removal, the OMG also adsorbed heavy metal ions, such as AsO2−, Pb²⁺, Cr2O72−, and Cd²⁺ ions, with removal efficiencies exceeding 60% and adsorption capacities exceeding 200 mg/g. The OMG also exhibited remarkable antibacterial activity against E. coli and S. Typhi, with almost zero viability for S. Typhi. The OMG promises a broad-spectrum applicability in wastewater treatment, offering a sustainable and efficient solution for water decontamination.
npj Clean WaterEnvironmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍:
npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.