Role of reversible redox couples (Ni2+/Ni3+ and Fe2+/Fe3+) in selective H2O2 detection behaviour of two-pot synthesized NiFeP nanointerface: An enzyme-free voltammetric approach

IF 6.9 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Nikita J. Patil , Nynita Makkapati , V. Deeksha , Ramakrishnan Vishnuraj , G. Balaji , Murali Rangarajan , Parthasarathy Srinivasan
{"title":"Role of reversible redox couples (Ni2+/Ni3+ and Fe2+/Fe3+) in selective H2O2 detection behaviour of two-pot synthesized NiFeP nanointerface: An enzyme-free voltammetric approach","authors":"Nikita J. Patil ,&nbsp;Nynita Makkapati ,&nbsp;V. Deeksha ,&nbsp;Ramakrishnan Vishnuraj ,&nbsp;G. Balaji ,&nbsp;Murali Rangarajan ,&nbsp;Parthasarathy Srinivasan","doi":"10.1016/j.apsusc.2025.164147","DOIUrl":null,"url":null,"abstract":"<div><div>Probing H<sub>2</sub>O<sub>2</sub> in drinking water is vital as it directly impacts the lives of aquatic animals and humans. Herein, we report an enzyme-free electrochemical voltammetric approach for selectively detecting H<sub>2</sub>O<sub>2</sub> in drinking water employing NiFeP nanointerface for the first time. The NiFeP was synthesized <em>via</em> a two-pot synthesis by phosphorizing hydrothermally prepared NiFe Layered Double Hydroxides (LDH). Structural analysis revealed the disappearance of LDH-specific diffraction peaks ((0 0 3) and (0 0 6)) and the emergence of distinct NiFeP crystalline planes, confirming the successful structural conversion from NiFe-LDH to NiFeP. NiFeP nanointerface showed linear detection ranges of H<sub>2</sub>O<sub>2</sub> (0.1–1 μM and 5–100 μM), with LODs of 0.027 μM and 1.58 μM, and sensitivities of 17.11 and 0.81 μA mM<sup>−1</sup> cm<sup>−2</sup>, respectively. The enhanced electrochemical performance of the NiFeP system prevails in the interaction with H<sub>2</sub>O<sub>2,</sub> with substantial redox activity by reversible redox couples, compared to the NiFe LDH, where the redox couples (Ni<sup>2+</sup>/Ni<sup>3+</sup> and Fe<sup>2+</sup>/Fe<sup>3+</sup>) are limited. This work demonstrates NiFeP as a redox-active nanointerface for highly selective enzyme-free H<sub>2</sub>O<sub>2</sub> sensing, with recovery studies being carried out in drinking water, which validated its practical applicability in real-time environmental monitoring.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"712 ","pages":"Article 164147"},"PeriodicalIF":6.9000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433225018628","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Probing H2O2 in drinking water is vital as it directly impacts the lives of aquatic animals and humans. Herein, we report an enzyme-free electrochemical voltammetric approach for selectively detecting H2O2 in drinking water employing NiFeP nanointerface for the first time. The NiFeP was synthesized via a two-pot synthesis by phosphorizing hydrothermally prepared NiFe Layered Double Hydroxides (LDH). Structural analysis revealed the disappearance of LDH-specific diffraction peaks ((0 0 3) and (0 0 6)) and the emergence of distinct NiFeP crystalline planes, confirming the successful structural conversion from NiFe-LDH to NiFeP. NiFeP nanointerface showed linear detection ranges of H2O2 (0.1–1 μM and 5–100 μM), with LODs of 0.027 μM and 1.58 μM, and sensitivities of 17.11 and 0.81 μA mM−1 cm−2, respectively. The enhanced electrochemical performance of the NiFeP system prevails in the interaction with H2O2, with substantial redox activity by reversible redox couples, compared to the NiFe LDH, where the redox couples (Ni2+/Ni3+ and Fe2+/Fe3+) are limited. This work demonstrates NiFeP as a redox-active nanointerface for highly selective enzyme-free H2O2 sensing, with recovery studies being carried out in drinking water, which validated its practical applicability in real-time environmental monitoring.

Abstract Image

Abstract Image

可逆氧化还原偶(Ni2+/Ni3+和Fe2+/Fe3+)在两罐合成NiFeP纳米界面选择性检测H2O2行为中的作用:无酶伏安法
探测饮用水中的H2O2至关重要,因为它直接影响水生动物和人类的生命。在此,我们首次报道了一种利用NiFeP纳米界面选择性检测饮用水中H2O2的无酶电化学伏安法。采用水热法制备NiFe层状双氢氧化物(LDH),采用双锅法合成NiFeP。结构分析显示,ldh特异衍射峰(0 0 3)和(0 0 6)消失,NiFeP晶面明显,证实了NiFe-LDH向NiFeP结构的成功转化。NiFeP纳米界面对H2O2的线性检测范围为0.1 ~ 1 μM和5 ~ 100 μM,检出限分别为0.027 μM和1.58 μM,灵敏度分别为17.11和0.81 μA mM−1 cm−2。与niife LDH相比,NiFeP体系在与H2O2相互作用时电化学性能增强,具有明显的可逆氧化还原偶活性,而NiFeP体系的氧化还原偶(Ni2+/Ni3+和Fe2+/Fe3+)有限。这项工作证明了NiFeP是一种氧化还原活性纳米界面,用于高选择性无酶H2O2传感,并在饮用水中进行了回收研究,验证了其在实时环境监测中的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信