{"title":"High-power, high-wall-plug-efficiency quantum cascade lasers with high-brightness in continuous wave operation at 3–300μm","authors":"Manijeh Razeghi, Yanbo Bai, Feihu Wang","doi":"10.1038/s41377-025-01935-6","DOIUrl":null,"url":null,"abstract":"<p>Quantum cascade lasers (QCLs) are unipolar quantum devices based on inter-sub-band transitions. They break the electron-hole recombination mechanism in traditional semiconductor lasers, overcome the long-lasting bottleneck which is that the emission wavelength of semiconductor laser is completely dependent on the bandgap of semiconductor materials. Therefore, their emission wavelength is able to cover the mid-infrared (mid-IR) range and the “Terahertz gap” that is previously inaccessible by any other semiconductor lasers. After thirty years development, QCLs have become the most promising light source in the mid-IR and THz regime. In this paper, we are going to present the strategies and methodologies to achieve high-power, high-wall-plug-efficiency (WPE) QCLs with high-brightness in room temperature continuous-wave (cw) operation at 3–300 μm. We will also review the recent breakthroughs in QCL community, especially the high-power, high WPE intersubband lasers in room temperature cw operation.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"25 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01935-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum cascade lasers (QCLs) are unipolar quantum devices based on inter-sub-band transitions. They break the electron-hole recombination mechanism in traditional semiconductor lasers, overcome the long-lasting bottleneck which is that the emission wavelength of semiconductor laser is completely dependent on the bandgap of semiconductor materials. Therefore, their emission wavelength is able to cover the mid-infrared (mid-IR) range and the “Terahertz gap” that is previously inaccessible by any other semiconductor lasers. After thirty years development, QCLs have become the most promising light source in the mid-IR and THz regime. In this paper, we are going to present the strategies and methodologies to achieve high-power, high-wall-plug-efficiency (WPE) QCLs with high-brightness in room temperature continuous-wave (cw) operation at 3–300 μm. We will also review the recent breakthroughs in QCL community, especially the high-power, high WPE intersubband lasers in room temperature cw operation.