Machine learning driven rational design of AuAgPdHgCu HEA catalysts for two-electron oxygen reduction reaction

IF 4.3 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Zhen Chen, Xi Liu, Junyi Zhu, Bihua Hu, Lin Yang, Xin Wang, Shuqin Song, Zhongwei Chen
{"title":"Machine learning driven rational design of AuAgPdHgCu HEA catalysts for two-electron oxygen reduction reaction","authors":"Zhen Chen, Xi Liu, Junyi Zhu, Bihua Hu, Lin Yang, Xin Wang, Shuqin Song, Zhongwei Chen","doi":"10.1039/d5cc03076e","DOIUrl":null,"url":null,"abstract":"This study integrated high-throughput DFT calcuulations and machine learning to screen AuAgPdHgCu high-entropy alloy catalysts, revealing that negative d-band shifts of Hg/Cu optimize ΔG<small><sub>*OOH</sub></small> for enhanced 2e⁻ ORR activity. Structural-activity analysis identified an optimal configuration (0.97 ideal active sites), guiding efficient catalyst design.","PeriodicalId":67,"journal":{"name":"Chemical Communications","volume":"19 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5cc03076e","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study integrated high-throughput DFT calcuulations and machine learning to screen AuAgPdHgCu high-entropy alloy catalysts, revealing that negative d-band shifts of Hg/Cu optimize ΔG*OOH for enhanced 2e⁻ ORR activity. Structural-activity analysis identified an optimal configuration (0.97 ideal active sites), guiding efficient catalyst design.
机器学习驱动双电子氧还原反应的AuAgPdHgCu HEA催化剂的合理设计
本研究结合高通量DFT计算和机器学习筛选AuAgPdHgCu高熵合金催化剂,发现Hg/Cu的负d波段位移优化ΔG*OOH以增强2e - ORR活性。结构-活性分析确定了最佳构型(0.97个理想活性位点),指导了高效催化剂的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Communications
Chemical Communications 化学-化学综合
CiteScore
8.60
自引率
4.10%
发文量
2705
审稿时长
1.4 months
期刊介绍: ChemComm (Chemical Communications) is renowned as the fastest publisher of articles providing information on new avenues of research, drawn from all the world''s major areas of chemical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信