Nitzan Aframian, Shira Omer Bendori, Tal Hen, Polina Guler, Avigdor Eldar
{"title":"Expression level of anti-phage defence systems controls a trade-off between protection range and autoimmunity","authors":"Nitzan Aframian, Shira Omer Bendori, Tal Hen, Polina Guler, Avigdor Eldar","doi":"10.1038/s41564-025-02063-y","DOIUrl":null,"url":null,"abstract":"The evolutionary arms race between bacteria and phages has given rise to elaborate anti-phage defence mechanisms. Although many of these systems have been characterized at the molecular level, the general principles and constraints at play are underexplored. It is broadly recognized that in addition to the protection they provide, these systems also bear a substantial cost. Here we identify an expression-dependent trade-off between the protection range of defence systems and the fitness burden they impose. We first focus on the SpbK system of Bacillus subtilis and then generalize to other systems across a range of bacteria. We show that increasing expression of defence systems enhances their protection range, and provide evidence that this is achieved by overwhelming phage strategies for circumventing bacterial defence. However, for most systems tested, increased expression also leads to self-inflicted toxicity. This trade-off between protection and autoimmunity may shape the evolution of regulatory strategies and favour the coexistence of multiple systems within a single genome. The authors examine several defense systems and find that increased expression enhances their protection range, albeit at a cost of autoimmunity.","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"10 8","pages":"1954-1962"},"PeriodicalIF":19.4000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41564-025-02063-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The evolutionary arms race between bacteria and phages has given rise to elaborate anti-phage defence mechanisms. Although many of these systems have been characterized at the molecular level, the general principles and constraints at play are underexplored. It is broadly recognized that in addition to the protection they provide, these systems also bear a substantial cost. Here we identify an expression-dependent trade-off between the protection range of defence systems and the fitness burden they impose. We first focus on the SpbK system of Bacillus subtilis and then generalize to other systems across a range of bacteria. We show that increasing expression of defence systems enhances their protection range, and provide evidence that this is achieved by overwhelming phage strategies for circumventing bacterial defence. However, for most systems tested, increased expression also leads to self-inflicted toxicity. This trade-off between protection and autoimmunity may shape the evolution of regulatory strategies and favour the coexistence of multiple systems within a single genome. The authors examine several defense systems and find that increased expression enhances their protection range, albeit at a cost of autoimmunity.
期刊介绍:
Nature Microbiology aims to cover a comprehensive range of topics related to microorganisms. This includes:
Evolution: The journal is interested in exploring the evolutionary aspects of microorganisms. This may include research on their genetic diversity, adaptation, and speciation over time.
Physiology and cell biology: Nature Microbiology seeks to understand the functions and characteristics of microorganisms at the cellular and physiological levels. This may involve studying their metabolism, growth patterns, and cellular processes.
Interactions: The journal focuses on the interactions microorganisms have with each other, as well as their interactions with hosts or the environment. This encompasses investigations into microbial communities, symbiotic relationships, and microbial responses to different environments.
Societal significance: Nature Microbiology recognizes the societal impact of microorganisms and welcomes studies that explore their practical applications. This may include research on microbial diseases, biotechnology, or environmental remediation.
In summary, Nature Microbiology is interested in research related to the evolution, physiology and cell biology of microorganisms, their interactions, and their societal relevance.