Intermolecular Interaction Adjustment for LiNO3 Solubility Promotion toward High-Performance Li||NCM811 Batteries.

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-07-25 DOI:10.1021/acsnano.5c07805
Chong Xu,Shuang Liu,Sai Che,Guang Ma,Gong Cheng,Dongyuan Zhang,Junjie Fu,Ye Wang,Jiahao Yang,Yuci Tian,Yongpeng Cui,Weihua Chen,Yongfeng Li
{"title":"Intermolecular Interaction Adjustment for LiNO3 Solubility Promotion toward High-Performance Li||NCM811 Batteries.","authors":"Chong Xu,Shuang Liu,Sai Che,Guang Ma,Gong Cheng,Dongyuan Zhang,Junjie Fu,Ye Wang,Jiahao Yang,Yuci Tian,Yongpeng Cui,Weihua Chen,Yongfeng Li","doi":"10.1021/acsnano.5c07805","DOIUrl":null,"url":null,"abstract":"Incorporating lithium nitrate (LiNO3) as a film-forming additive into carbonate-based electrolytes presents a promising strategy to enhance the stability of high-energy-density Li||NCM811 batteries. However, the small size of Li+ and the high donor number (DN) of NO3- hinder the dissociation of LiNO3, and its limited solubility (<800 ppm) in carbonate-based electrolytes poses significant challenges for practical application. To address this issue, we propose a \"Small-Sized Carrier\" strategy that enhances the solubility of LiNO3 in carbonate solvents by modulating the intermolecular interactions within the solvent system. This approach employs vinylene carbonate (VC), a small molecule with moderate polarity, to enhance the dissolution of LiNO3 without compromising the compatibility of the electrolyte with the lithium metal anode. The introduction of the \"Small-Sized Carrier\" additive system simultaneously enhances the stability of the electrode-electrolyte interfaces and optimizes the solvation structure of the electrolyte. As a result, the electrolyte developed through this strategy demonstrates outstanding electrochemical performance, with Li||NCM811 batteries achieving a capacity retention of 83.8% after 600 cycles. This work provides an insightful approach to designing advanced electrolytes tailored to high-energy-density lithium metal batteries (LMBs).","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"1 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c07805","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Incorporating lithium nitrate (LiNO3) as a film-forming additive into carbonate-based electrolytes presents a promising strategy to enhance the stability of high-energy-density Li||NCM811 batteries. However, the small size of Li+ and the high donor number (DN) of NO3- hinder the dissociation of LiNO3, and its limited solubility (<800 ppm) in carbonate-based electrolytes poses significant challenges for practical application. To address this issue, we propose a "Small-Sized Carrier" strategy that enhances the solubility of LiNO3 in carbonate solvents by modulating the intermolecular interactions within the solvent system. This approach employs vinylene carbonate (VC), a small molecule with moderate polarity, to enhance the dissolution of LiNO3 without compromising the compatibility of the electrolyte with the lithium metal anode. The introduction of the "Small-Sized Carrier" additive system simultaneously enhances the stability of the electrode-electrolyte interfaces and optimizes the solvation structure of the electrolyte. As a result, the electrolyte developed through this strategy demonstrates outstanding electrochemical performance, with Li||NCM811 batteries achieving a capacity retention of 83.8% after 600 cycles. This work provides an insightful approach to designing advanced electrolytes tailored to high-energy-density lithium metal batteries (LMBs).
分子间相互作用促进LiNO3在高性能Li||NCM811电池中的溶解度。
将硝酸锂(LiNO3)作为成膜添加剂添加到碳酸基电解质中,是提高高能量密度Li||NCM811电池稳定性的一种有前景的策略。然而,Li+的小尺寸和NO3-的高供体数(DN)阻碍了LiNO3的解离,并且LiNO3在碳酸基电解质中的溶解度有限(<800 ppm),这对实际应用构成了重大挑战。为了解决这个问题,我们提出了一种“小尺寸载体”策略,通过调节溶剂系统内的分子间相互作用来提高LiNO3在碳酸盐溶剂中的溶解度。这种方法采用了一种中等极性的小分子碳酸乙烯(VC)来增强LiNO3的溶解,同时又不影响电解质与锂金属阳极的相容性。“小型载流子”添加剂体系的引入,同时增强了电极-电解质界面的稳定性,优化了电解质的溶剂化结构。结果表明,通过该策略开发的电解质具有出色的电化学性能,Li||NCM811电池在600次循环后的容量保持率为83.8%。这项工作为设计高能量密度锂金属电池(lmb)的先进电解质提供了一种有见地的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信