Investigation on Piezoelectric Output Property of Bi2.5Na3.5Nb5O18 Modified P(VDF-TrFE) Piezoelectric Composite Films with Hierarchical Layer Structure.
{"title":"Investigation on Piezoelectric Output Property of Bi2.5Na3.5Nb5O18 Modified P(VDF-TrFE) Piezoelectric Composite Films with Hierarchical Layer Structure.","authors":"Jun Luo,Jizhong Deng,Zhiyi Wu,Yuanyu Wang","doi":"10.1021/acs.langmuir.5c02546","DOIUrl":null,"url":null,"abstract":"In this study, Bi2.5Na2.5Nb5O18 (BNN5)/poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) piezoelectric composite films were prepared via electrospinning technology. Meanwhile, the uniaxial intermittent alternating dual-spray method was employed to obtain composite films with alternating concentration variations of BNN5, which were then utilized to fabricate piezoelectric nanogenerators (PENGs). Among them, the composite film with a BNN5 content of 3/5 wt % exhibited the optimal β-phase proportion, reaching 85.1%. The piezoelectric output performance of this composite film was significantly enhanced: it had an output voltage as high as 25.3 V, which was 339.2% higher than that of the P(VDF-TrFE) film and 54.7% higher than that of the 4 wt % composite film with the same concentration. When the resistive load was 1 MΩ, the peak instantaneous output power was 38.3 μW, with a calculated current of 6.2 μA and an output power density of 5.1 μW/cm2. Both the current and power were higher than those of most reported PVDF/P(VDF-TrFE)-based piezoelectric films. The durability test with over 2200 cycles demonstrated that the piezoelectric composite film had excellent mechanical stability. This work presents a strategy to boost the output performance of piezoelectric composite films, namely, fabricating P(VDF-TrFE) composite films using the uniaxial intermittent alternating dual-spray technique, to meet the requirements of wearable and flexible electronic devices.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"114 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.5c02546","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, Bi2.5Na2.5Nb5O18 (BNN5)/poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) piezoelectric composite films were prepared via electrospinning technology. Meanwhile, the uniaxial intermittent alternating dual-spray method was employed to obtain composite films with alternating concentration variations of BNN5, which were then utilized to fabricate piezoelectric nanogenerators (PENGs). Among them, the composite film with a BNN5 content of 3/5 wt % exhibited the optimal β-phase proportion, reaching 85.1%. The piezoelectric output performance of this composite film was significantly enhanced: it had an output voltage as high as 25.3 V, which was 339.2% higher than that of the P(VDF-TrFE) film and 54.7% higher than that of the 4 wt % composite film with the same concentration. When the resistive load was 1 MΩ, the peak instantaneous output power was 38.3 μW, with a calculated current of 6.2 μA and an output power density of 5.1 μW/cm2. Both the current and power were higher than those of most reported PVDF/P(VDF-TrFE)-based piezoelectric films. The durability test with over 2200 cycles demonstrated that the piezoelectric composite film had excellent mechanical stability. This work presents a strategy to boost the output performance of piezoelectric composite films, namely, fabricating P(VDF-TrFE) composite films using the uniaxial intermittent alternating dual-spray technique, to meet the requirements of wearable and flexible electronic devices.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).