{"title":"\"Rigid-Flexible\" Strategy Realizes Robust Ultralong Phosphorescence for Multifunctional Display Unit and Photoreceptor Synapse.","authors":"Zhihao Guan,Zhaorun Tang,Zhengtong Yao,Quanxin Guo,Shuai Zhang,Zongze Lv,Xinyue Zhang,Ning Ma,Xinghai Liu,Zhiyu Hu","doi":"10.1002/adma.202507192","DOIUrl":null,"url":null,"abstract":"Amorphous materials are highly attractive for the development of ultralong room temperature phosphorescence (URTP) due to their ease of processing, scalability, and flexibility. However, the realization of stable URTP polymers remains a great challenge. Here, it is reported a robust and flexible approach to realize high-quality URTP polymers by doping the organic phosphor into the polymer matrix with both hydrophilic and hydrophobic components. This unique structure enables double confinement of the triplet exciton of phosphor, resulting in ultra-bright amorphous URTP films. URTP films exhibit narrow-band emission, ultra-long phosphorescence lifetime, ultra-high phosphorescence efficiency, and distinctive photoactivation properties, with intense phosphorescence emission observable even in daylight. Furthermore, it is demonstrated color-tunable emission through förster resonance energy transfer (FRET) and explores its potential applications in 3D printing, patterned displays, and bionic photoreceptor synapses. The work provides valuable insights into the design of robust, high-quality phosphorescent materials, which could pave the way for a wide range of applications in display and bionic technologies.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"52 1","pages":"e07192"},"PeriodicalIF":26.8000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202507192","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Amorphous materials are highly attractive for the development of ultralong room temperature phosphorescence (URTP) due to their ease of processing, scalability, and flexibility. However, the realization of stable URTP polymers remains a great challenge. Here, it is reported a robust and flexible approach to realize high-quality URTP polymers by doping the organic phosphor into the polymer matrix with both hydrophilic and hydrophobic components. This unique structure enables double confinement of the triplet exciton of phosphor, resulting in ultra-bright amorphous URTP films. URTP films exhibit narrow-band emission, ultra-long phosphorescence lifetime, ultra-high phosphorescence efficiency, and distinctive photoactivation properties, with intense phosphorescence emission observable even in daylight. Furthermore, it is demonstrated color-tunable emission through förster resonance energy transfer (FRET) and explores its potential applications in 3D printing, patterned displays, and bionic photoreceptor synapses. The work provides valuable insights into the design of robust, high-quality phosphorescent materials, which could pave the way for a wide range of applications in display and bionic technologies.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.