{"title":"A comprehensive framework for integrating lake hypsography and function on a global scale","authors":"Cristian Gudasz, Dominic Vachon, Yves T. Prairie","doi":"10.1038/s44221-025-00461-4","DOIUrl":null,"url":null,"abstract":"As climate change and nutrient pollution intensify, understanding how millions of lakes will respond to such forcings as a global or regional collective has become urgent and yet capturing their role in Earthʼs system remain neither conceptually unified nor empirically constrained. Here we introduce a framework that aggregates individual lake hypsography and functional attributes into composite lakes globally, across climate zones or 1-degree Earth system grid cells. We find that globally, lake shape mirrors land rather than ocean, with shallow areas dominating. This structure reveals systematic differences between glaciated and non-glaciated regions and between colder and warmer climate zones. At the 1-degree Earth system grid cells, composite lakes group into five distinct clusters. Globally, an estimated 43% of lake volume and sediment surface area lie within the mixed layer. A composite mixed layer volume-to-sediment-surface-area ratio reveals dominant water column influence and biogeochemical sensitivities, with strong contrasts across climates and glacial histories. The proposed framework advances quantifying and understanding the collective role of lakes across spatial scales in Earthʼs system. This Analysis presents a new framework that integrates lake hypsography and functional attributes at global and climatic scales, revealing key patterns in lake ecosystems and their responses to climate impacts.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"3 7","pages":"818-830"},"PeriodicalIF":24.1000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12279543/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature water","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44221-025-00461-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
As climate change and nutrient pollution intensify, understanding how millions of lakes will respond to such forcings as a global or regional collective has become urgent and yet capturing their role in Earthʼs system remain neither conceptually unified nor empirically constrained. Here we introduce a framework that aggregates individual lake hypsography and functional attributes into composite lakes globally, across climate zones or 1-degree Earth system grid cells. We find that globally, lake shape mirrors land rather than ocean, with shallow areas dominating. This structure reveals systematic differences between glaciated and non-glaciated regions and between colder and warmer climate zones. At the 1-degree Earth system grid cells, composite lakes group into five distinct clusters. Globally, an estimated 43% of lake volume and sediment surface area lie within the mixed layer. A composite mixed layer volume-to-sediment-surface-area ratio reveals dominant water column influence and biogeochemical sensitivities, with strong contrasts across climates and glacial histories. The proposed framework advances quantifying and understanding the collective role of lakes across spatial scales in Earthʼs system. This Analysis presents a new framework that integrates lake hypsography and functional attributes at global and climatic scales, revealing key patterns in lake ecosystems and their responses to climate impacts.