A deep learning phenome wide association study of the electrocardiogram.

IF 4.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
European heart journal. Digital health Pub Date : 2025-05-08 eCollection Date: 2025-07-01 DOI:10.1093/ehjdh/ztaf047
John Weston Hughes, John Theurer, Milos Vukadinovic, Albert J Rogers, Sulaiman Somani, Guson Kang, Zaniar Ghazizadeh, Jack W O'Sullivan, Sneha S Jain, Bruna Gomes, Michael Salerno, Euan Ashley, James Y Zou, Marco V Perez, David Ouyang
{"title":"A deep learning phenome wide association study of the electrocardiogram.","authors":"John Weston Hughes, John Theurer, Milos Vukadinovic, Albert J Rogers, Sulaiman Somani, Guson Kang, Zaniar Ghazizadeh, Jack W O'Sullivan, Sneha S Jain, Bruna Gomes, Michael Salerno, Euan Ashley, James Y Zou, Marco V Perez, David Ouyang","doi":"10.1093/ehjdh/ztaf047","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Deep learning methods have shown impressive performance in detecting a range of diseases from electrocardiogram (ECG) waveforms, but the breadth of diseases that can be detected with high accuracy remains unknown, and in many cases the changes to the ECG allowing these classifications are also opaque. In this study, we aim to determine the full set of cardiac and non-cardiac conditions detectable from the ECG and to understand which ECG features contribute to the disease classification.</p><p><strong>Methods and results: </strong>Using large datasets of ECGs and connected electronic health records from two separate medical centres, we independently trained PheWASNet, a multi-task deep learning model, to detect 1243 different disease phenotypes from the raw ECG waveform. We confirmed that the ECG can be used to detect chronic kidney disease (AUC = 0.80), cirrhosis (AUC = 0.80), and sepsis (AUC = 0.84), as well as a range of cardiac diseases, and also found new detectable conditions, including respiratory failure (AUC = 0.86), neutropenia (AUC = 0.83), and menstrual disorders (AUC = 0.84). We found that of the 37 non-cardiac strongly detectable conditions, 35 were detectable by the model output for just four diseases, suggesting that they have similar effects on the ECG. We found that high performance in some conditions including neutropenia, respiratory failure, and sepsis can be explained by linear models based on conventional measurements taken from the ECG.</p><p><strong>Conclusion: </strong>Our study uncovers a range of diseases detectable in the ECG, including many previously unknown phenotypes, and makes progress towards understanding ECG features that allow this detection.</p>","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":"6 4","pages":"595-607"},"PeriodicalIF":4.4000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12282379/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztaf047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: Deep learning methods have shown impressive performance in detecting a range of diseases from electrocardiogram (ECG) waveforms, but the breadth of diseases that can be detected with high accuracy remains unknown, and in many cases the changes to the ECG allowing these classifications are also opaque. In this study, we aim to determine the full set of cardiac and non-cardiac conditions detectable from the ECG and to understand which ECG features contribute to the disease classification.

Methods and results: Using large datasets of ECGs and connected electronic health records from two separate medical centres, we independently trained PheWASNet, a multi-task deep learning model, to detect 1243 different disease phenotypes from the raw ECG waveform. We confirmed that the ECG can be used to detect chronic kidney disease (AUC = 0.80), cirrhosis (AUC = 0.80), and sepsis (AUC = 0.84), as well as a range of cardiac diseases, and also found new detectable conditions, including respiratory failure (AUC = 0.86), neutropenia (AUC = 0.83), and menstrual disorders (AUC = 0.84). We found that of the 37 non-cardiac strongly detectable conditions, 35 were detectable by the model output for just four diseases, suggesting that they have similar effects on the ECG. We found that high performance in some conditions including neutropenia, respiratory failure, and sepsis can be explained by linear models based on conventional measurements taken from the ECG.

Conclusion: Our study uncovers a range of diseases detectable in the ECG, including many previously unknown phenotypes, and makes progress towards understanding ECG features that allow this detection.

Abstract Image

Abstract Image

Abstract Image

心电图的深度学习现象组广泛关联研究。
目的:深度学习方法在从心电图(ECG)波形检测一系列疾病方面显示出令人印象深刻的性能,但是可以高精度检测到的疾病的广度仍然未知,并且在许多情况下,允许这些分类的ECG变化也是不透明的。在这项研究中,我们的目标是确定从ECG检测到的全套心脏和非心脏疾病,并了解哪些ECG特征有助于疾病分类。方法和结果:使用来自两个独立医疗中心的大型心电图数据集和连接的电子健康记录,我们独立训练了PheWASNet,一个多任务深度学习模型,从原始心电图波形中检测1243种不同的疾病表型。我们证实心电图可用于检测慢性肾脏疾病(AUC = 0.80)、肝硬化(AUC = 0.80)和败血症(AUC = 0.84),以及一系列心脏疾病,并发现新的可检测疾病,包括呼吸衰竭(AUC = 0.86)、中性粒细胞减少(AUC = 0.83)和月经紊乱(AUC = 0.84)。我们发现,在37种非心脏强烈可检测的疾病中,只有4种疾病的模型输出可检测到35种,这表明它们对ECG有相似的影响。我们发现,在一些情况下,包括中性粒细胞减少症、呼吸衰竭和败血症,可以用基于ECG常规测量的线性模型来解释。结论:我们的研究揭示了一系列可在ECG中检测到的疾病,包括许多以前未知的表型,并在理解允许这种检测的ECG特征方面取得了进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信