Synthetic electrocardiograms for Brugada syndrome: from data generation to expert cardiologists evaluation.

IF 4.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
European heart journal. Digital health Pub Date : 2025-04-24 eCollection Date: 2025-07-01 DOI:10.1093/ehjdh/ztaf039
Beatrice Zanchi, Giuliana Monachino, Francesca Dalia Faraci, Matteo Metaldi, Pedro Brugada, Georgia Sarquella-Brugada, Elijah R Behr, Josep Brugada, Lia Crotti, Bernard Belhassen, Giulio Conte
{"title":"Synthetic electrocardiograms for Brugada syndrome: from data generation to expert cardiologists evaluation.","authors":"Beatrice Zanchi, Giuliana Monachino, Francesca Dalia Faraci, Matteo Metaldi, Pedro Brugada, Georgia Sarquella-Brugada, Elijah R Behr, Josep Brugada, Lia Crotti, Bernard Belhassen, Giulio Conte","doi":"10.1093/ehjdh/ztaf039","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Synthetic electrocardiograms (ECGs) for inherited cardiac diseases may overcome the issue related to data scarcity for artificial intelligence (AI)-based algorithms. This study aimed to evaluate experienced cardiologists' ability to differentiate synthetic and real Brugada ECGs.</p><p><strong>Methods and results: </strong>A total of 2244 ECG instances (50% synthetic generated by a generative adversarial network, 50% real Brugada patients' ECGs) were evaluated by 7 cardiologists, each with >15 years of experience. All ECGs were standard 12-lead recordings acquired with identical settings (paper speed 25 mm/s, amplitude 10 mm/mV) and randomly assigned without identifying markers. The examination was blinded and conducted in 2 rounds with at least 2 h gap between rounds to assess potential learning effects and intra-rater reliability. Each physician classified the recordings as 'real' or 'synthetic' without having any additional information. Performance metrics, including accuracy, sensitivity, specificity, and intra-rater reliability (Cohen's Kappa), were analyzed. Brugada syndrome (BrS) specialists' repeated evaluations were characterized by low accuracy (first round 40%, second round 42%), specificity (first round 22%, second round 26%) and sensitivity (first round 58%, second round 58%). Intra-rater reliability varied widely (Cohen's Kappa: -0.12 to 0.80).</p><p><strong>Conclusion: </strong>Synthetic Brugada ECGs cannot be adequately distinguished from real patients' ECGs by BrS specialists.</p>","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":"6 4","pages":"683-687"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12282356/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztaf039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: Synthetic electrocardiograms (ECGs) for inherited cardiac diseases may overcome the issue related to data scarcity for artificial intelligence (AI)-based algorithms. This study aimed to evaluate experienced cardiologists' ability to differentiate synthetic and real Brugada ECGs.

Methods and results: A total of 2244 ECG instances (50% synthetic generated by a generative adversarial network, 50% real Brugada patients' ECGs) were evaluated by 7 cardiologists, each with >15 years of experience. All ECGs were standard 12-lead recordings acquired with identical settings (paper speed 25 mm/s, amplitude 10 mm/mV) and randomly assigned without identifying markers. The examination was blinded and conducted in 2 rounds with at least 2 h gap between rounds to assess potential learning effects and intra-rater reliability. Each physician classified the recordings as 'real' or 'synthetic' without having any additional information. Performance metrics, including accuracy, sensitivity, specificity, and intra-rater reliability (Cohen's Kappa), were analyzed. Brugada syndrome (BrS) specialists' repeated evaluations were characterized by low accuracy (first round 40%, second round 42%), specificity (first round 22%, second round 26%) and sensitivity (first round 58%, second round 58%). Intra-rater reliability varied widely (Cohen's Kappa: -0.12 to 0.80).

Conclusion: Synthetic Brugada ECGs cannot be adequately distinguished from real patients' ECGs by BrS specialists.

Abstract Image

Abstract Image

Brugada综合征的合成心电图:从数据生成到心脏病专家评估。
目的:遗传性心脏病的合成心电图(ECGs)可以克服基于人工智能(AI)算法的数据稀缺问题。这项研究旨在评估有经验的心脏病专家区分合成和真实Brugada心电图的能力。方法和结果:共有2244例心电图(50%是由生成对抗网络合成的,50%是真实的Brugada患者的心电图)由7名心脏病专家评估,每个专家都有50 - 15年的经验。所有心电图都是标准的12导联记录,设置相同(纸张速度25 mm/s,振幅10 mm/mV),随机分配,没有识别标记。该研究采用盲法,分两轮进行,两轮之间至少间隔2小时,以评估潜在的学习效果和评分者内信度。每位医生在没有任何附加信息的情况下,将录音分为“真实”和“合成”。性能指标,包括准确性、敏感性、特异性和内部可靠性(Cohen’s Kappa)进行分析。Brugada综合征(BrS)专家重复评估的特点是准确性低(第一轮40%,第二轮42%),特异性低(第一轮22%,第二轮26%),敏感性低(第一轮58%,第二轮58%)。内部信度差异很大(科恩Kappa: -0.12至0.80)。结论:BrS专家无法将合成的Brugada心电图与真实患者的心电图充分区分开来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信