Machine learning approach for automated localization of ventricular tachycardia ablation targets from substrate maps: development and validation in a porcine model.

IF 4.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
European heart journal. Digital health Pub Date : 2025-06-10 eCollection Date: 2025-07-01 DOI:10.1093/ehjdh/ztaf064
Xuezhe Wang, Adam Dennis, Eva Melis Hesselkilde, Arnela Saljic, Benedikt M Linz, Stefan M Sattler, James Williams, Jacob Tfelt-Hansen, Thomas Jespersen, Anthony W C Chow, Tarvinder Dhanjal, Pier D Lambiase, Michele Orini
{"title":"Machine learning approach for automated localization of ventricular tachycardia ablation targets from substrate maps: development and validation in a porcine model.","authors":"Xuezhe Wang, Adam Dennis, Eva Melis Hesselkilde, Arnela Saljic, Benedikt M Linz, Stefan M Sattler, James Williams, Jacob Tfelt-Hansen, Thomas Jespersen, Anthony W C Chow, Tarvinder Dhanjal, Pier D Lambiase, Michele Orini","doi":"10.1093/ehjdh/ztaf064","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>The recurrence rate of ventricular tachycardia (VT) after ablation remains high due to the difficulty in locating VT critical sites. This study proposes a machine learning approach for improved identification of ablation targets based on intracardiac electrograms (EGMs) features derived from standard substrate mapping in a chronic myocardial infarction (MI) porcine model.</p><p><strong>Methods and results: </strong>Thirteen pigs with chronic MI underwent invasive electrophysiological studies using multipolar catheters (Advisor™ HD grid, EnSite Precision™). Fifty-six substrate maps and 35 068 EGMs were collected during sinus rhythm and pacing from multiple sites, including left, right, and biventricular pacing. Ventricular tachycardia was induced in all pigs, and a total of 36 VTs were localized and mapped with early, mid-, and late diastolic components of the circuit. Mapping sites within 6 mm from these critical sites were considered as potential ablation targets. Forty-six signal features representing functional, spatial, spectral, and time-frequency properties were computed from each bipolar and unipolar EGM. Several machine learning models were developed to automatically localize ablation targets, and logistic regressions were used to investigate the association between signal features and VT critical sites. Random forest provided the best accuracy based on unipolar signals from sinus rhythm map, provided an area under the curve of 0.821 with sensitivity and specificity of 81.4% and 71.4%, respectively.</p><p><strong>Conclusion: </strong>This study demonstrates for the first time that machine learning approaches based on EGM features may support clinicians in localizing targets for VT ablation using substrate mapping. This could lead to the development of similar approaches in VT patients.</p>","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":"6 4","pages":"645-655"},"PeriodicalIF":4.4000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12282365/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztaf064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: The recurrence rate of ventricular tachycardia (VT) after ablation remains high due to the difficulty in locating VT critical sites. This study proposes a machine learning approach for improved identification of ablation targets based on intracardiac electrograms (EGMs) features derived from standard substrate mapping in a chronic myocardial infarction (MI) porcine model.

Methods and results: Thirteen pigs with chronic MI underwent invasive electrophysiological studies using multipolar catheters (Advisor™ HD grid, EnSite Precision™). Fifty-six substrate maps and 35 068 EGMs were collected during sinus rhythm and pacing from multiple sites, including left, right, and biventricular pacing. Ventricular tachycardia was induced in all pigs, and a total of 36 VTs were localized and mapped with early, mid-, and late diastolic components of the circuit. Mapping sites within 6 mm from these critical sites were considered as potential ablation targets. Forty-six signal features representing functional, spatial, spectral, and time-frequency properties were computed from each bipolar and unipolar EGM. Several machine learning models were developed to automatically localize ablation targets, and logistic regressions were used to investigate the association between signal features and VT critical sites. Random forest provided the best accuracy based on unipolar signals from sinus rhythm map, provided an area under the curve of 0.821 with sensitivity and specificity of 81.4% and 71.4%, respectively.

Conclusion: This study demonstrates for the first time that machine learning approaches based on EGM features may support clinicians in localizing targets for VT ablation using substrate mapping. This could lead to the development of similar approaches in VT patients.

Abstract Image

Abstract Image

Abstract Image

从底物图中自动定位室性心动过速消融目标的机器学习方法:在猪模型中的开发和验证。
目的:室性心动过速(VT)消融后复发率居高不下,主要原因是室性心动过速关键部位定位困难。本研究提出了一种机器学习方法,用于基于慢性心肌梗死(MI)猪模型中标准底物映射得出的心内电图(EGMs)特征来改进消融目标的识别。方法和结果:13头患有慢性心肌梗死的猪使用多极导管(Advisor™HD grid, EnSite Precision™)进行有创伤性电生理研究。在窦性心律和起搏期间,包括左室、右室和双室起搏,收集56个底物图和35 068个egm。所有猪均被诱导室性心动过速,共有36个VTs被定位,并与舒张早期、中期和晚期的电路组成部分进行了映射。距离这些关键部位6mm以内的定位位点被认为是潜在的消融目标。从每个双极和单极EGM中计算46个信号特征,代表功能、空间、频谱和时频特性。开发了几种机器学习模型来自动定位消融目标,并使用逻辑回归来研究信号特征与VT关键部位之间的关联。随机森林基于窦性节律图的单极信号提供了最好的准确性,曲线下面积为0.821,灵敏度和特异性分别为81.4%和71.4%。结论:该研究首次证明,基于EGM特征的机器学习方法可以支持临床医生使用基底图定位VT消融目标。这可能导致室性心动过速患者采用类似的治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信