Kai-Qi Yek, Evie R Hodgson, Ching-Seng Ang, Catherine S Palmer, Ann E Frazier, Hayley J Newton, Diana Stojanovski
{"title":"Legionella effector LpPIP recruits protein phosphatase 1 to the mitochondria to induce dephosphorylation of outer membrane proteins.","authors":"Kai-Qi Yek, Evie R Hodgson, Ching-Seng Ang, Catherine S Palmer, Ann E Frazier, Hayley J Newton, Diana Stojanovski","doi":"10.1371/journal.pbio.3003261","DOIUrl":null,"url":null,"abstract":"<p><p>Legionella pneumophila utilizes a type IVB secretion system (T4SS) to translocate over 300 effector proteins into host cells, hijacking cellular processes, including those within the mitochondrion. Currently, no Legionella effectors have been identified at the mitochondrial outer membrane, a critical interface between the organelle and the rest of the cell. We screened the Legionella effector repertoire for features of mitochondrial tail-anchored (TA) proteins and identified four putative TA effectors. Among them, LpPIP (Lpg1625) localizes to the mitochondrial outer membrane and interacts with all three isoforms of protein phosphatase 1 (PP1) via an RVxF motif, functioning as a PP1-interacting protein (PIP). Importantly, PP1 remains catalytically active upon interaction with LpPIP to dephosphorylate mitochondrial outer membrane proteins. Altering the TA signature to direct LpPIP to the ER induces ER-recruitment of PP1 and dephosphorylation of ER-resident proteins, indicating that LpPIP controls PP1 localization and not substrate specificity. This study uncovers a novel pathogen-mediated strategy to modulate PP1 and manipulate the host cell phosphoproteome.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 7","pages":"e3003261"},"PeriodicalIF":7.2000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12313075/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3003261","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Legionella pneumophila utilizes a type IVB secretion system (T4SS) to translocate over 300 effector proteins into host cells, hijacking cellular processes, including those within the mitochondrion. Currently, no Legionella effectors have been identified at the mitochondrial outer membrane, a critical interface between the organelle and the rest of the cell. We screened the Legionella effector repertoire for features of mitochondrial tail-anchored (TA) proteins and identified four putative TA effectors. Among them, LpPIP (Lpg1625) localizes to the mitochondrial outer membrane and interacts with all three isoforms of protein phosphatase 1 (PP1) via an RVxF motif, functioning as a PP1-interacting protein (PIP). Importantly, PP1 remains catalytically active upon interaction with LpPIP to dephosphorylate mitochondrial outer membrane proteins. Altering the TA signature to direct LpPIP to the ER induces ER-recruitment of PP1 and dephosphorylation of ER-resident proteins, indicating that LpPIP controls PP1 localization and not substrate specificity. This study uncovers a novel pathogen-mediated strategy to modulate PP1 and manipulate the host cell phosphoproteome.
期刊介绍:
PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions.
The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public.
PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.