Valeria Caragli, Valerio M Di Pasquale Fiasca, Elisabetta Genovese, Alessandro Martini
{"title":"Kolliker's Organ and Its Functional Role in the Development of Corti's Organ and Auditory Systems.","authors":"Valeria Caragli, Valerio M Di Pasquale Fiasca, Elisabetta Genovese, Alessandro Martini","doi":"10.3390/audiolres15040075","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background</b>: Kölliker's organ (KO), a transient structure in the cochlea, plays a critical role in the auditory maturation of mammals, particularly during embryonic and early postnatal development. This organ is essential for the proper differentiation and function of cochlear cells, acting as a pivotal source of signalling molecules that influence hair cell development and synaptic connectivity. <b>Methods</b>: This study systematically analyses the literature according to the PRISMA statement in order to evaluate the function roles of KO during cochlea development, reporting the molecular mechanisms and signalling pathways involved. <b>Results</b>: From our study, it emerged that KO supporting cells release adenosine triphosphate (ATP) through connexin hemichannels, initiating a cascade of intracellular calcium (Ca<sup>2+</sup>) signalling in adjacent inner hair cells (IHCs). This signalling promotes the release of glutamate, facilitating synaptic excitation of afferent nerve fibres and enhancing auditory neuron maturation prior to the onset of hearing. Additionally, the spontaneous electrical activity generated within KO supports the establishment of essential neural connections in the auditory pathway. The dynamic interplay between ATP release, Ca<sup>2+</sup> signalling, and morphological changes in KO is crucial for cochlear compartmentalisation and fluid regulation, contributing to the formation of endolymph and perilymph. Furthermore, KO supports cellular plasticity and may provide a reservoir of precursor cells capable of trans-differentiating into hair cells under specific conditions. <b>Conclusions</b>: Dysregulation of KO function or delayed degeneration of its supporting cells has been implicated in auditory disorders, underscoring the importance of this organ in normal cochlear development and auditory function. Despite its identification over a century ago, further investigation is necessary to elucidate the molecular mechanisms underlying KO's contributions to auditory maturation, particularly in human physiology.</p>","PeriodicalId":44133,"journal":{"name":"Audiology Research","volume":"15 4","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12285961/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Audiology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/audiolres15040075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Kölliker's organ (KO), a transient structure in the cochlea, plays a critical role in the auditory maturation of mammals, particularly during embryonic and early postnatal development. This organ is essential for the proper differentiation and function of cochlear cells, acting as a pivotal source of signalling molecules that influence hair cell development and synaptic connectivity. Methods: This study systematically analyses the literature according to the PRISMA statement in order to evaluate the function roles of KO during cochlea development, reporting the molecular mechanisms and signalling pathways involved. Results: From our study, it emerged that KO supporting cells release adenosine triphosphate (ATP) through connexin hemichannels, initiating a cascade of intracellular calcium (Ca2+) signalling in adjacent inner hair cells (IHCs). This signalling promotes the release of glutamate, facilitating synaptic excitation of afferent nerve fibres and enhancing auditory neuron maturation prior to the onset of hearing. Additionally, the spontaneous electrical activity generated within KO supports the establishment of essential neural connections in the auditory pathway. The dynamic interplay between ATP release, Ca2+ signalling, and morphological changes in KO is crucial for cochlear compartmentalisation and fluid regulation, contributing to the formation of endolymph and perilymph. Furthermore, KO supports cellular plasticity and may provide a reservoir of precursor cells capable of trans-differentiating into hair cells under specific conditions. Conclusions: Dysregulation of KO function or delayed degeneration of its supporting cells has been implicated in auditory disorders, underscoring the importance of this organ in normal cochlear development and auditory function. Despite its identification over a century ago, further investigation is necessary to elucidate the molecular mechanisms underlying KO's contributions to auditory maturation, particularly in human physiology.
期刊介绍:
The mission of Audiology Research is to publish contemporary, ethical, clinically relevant scientific researches related to the basic science and clinical aspects of the auditory and vestibular system and diseases of the ear that can be used by clinicians, scientists and specialists to improve understanding and treatment of patients with audiological and neurotological disorders.