Combined Effects of Nano-Polystyrene and Heavy Metal Mixture on the Bioaccumulation of Heavy Metals and Physiological Changes in Macrobrachium rosenbergii.
Mahdi Banaee, Amir Zeidi, Amal Beitsayah, Cristiana Roberta Multisanti, Caterina Faggio
{"title":"Combined Effects of Nano-Polystyrene and Heavy Metal Mixture on the Bioaccumulation of Heavy Metals and Physiological Changes in <i>Macrobrachium rosenbergii</i>.","authors":"Mahdi Banaee, Amir Zeidi, Amal Beitsayah, Cristiana Roberta Multisanti, Caterina Faggio","doi":"10.3390/jox15040113","DOIUrl":null,"url":null,"abstract":"<p><p>Contaminants such as nano-polystyrenes (NPs) and heavy metal cocktail (HMC) have been found to disrupt physiological functions in aquatic organisms. Although HMC and NPs alone induce oxidative stress, their combined effects are not well understood. This study aimed to assess the combined effects of HMC and NPs on the freshwater shrimp (<i>Macrobrachium rosenbergii</i>). Shrimp were divided into seven groups, including the control group, and the experimental groups co-exposed to 0, 50, 100, 150, 200, and 250 µg/L NPs combined with 0.5 mg/L HMC. After 14 days, shrimp were sampled, and their hepatopancreas and muscle tissues were analyzed for oxidative biomarkers, biochemical parameters, and metabolic profiles. Moreover, the bioaccumulation rate of heavy metals was measured. Results showed that co-exposure to NPs and HMC increased superoxide dismutase, glutathione peroxidase, glutathione reductase activities, and malondialdehyde levels, while reducing glutathione and total antioxidant capacity. The integrated biomarker response indicated that co-exposure to HMC and NPs induces oxidative stress. A significant decrease was observed in aspartate aminotransferase, gamma-glutamyl transpeptidase, and alkaline phosphatase activities, glycogen, triglyceride, and total protein levels. However, lactate dehydrogenase activity was significantly increased. Co-exposure to HMC and NPs increased heavy metal bioaccumulation, induced oxidative stress, biochemical changes, and enhanced HMC toxicity in shrimp.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"15 4","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12286050/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Xenobiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jox15040113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Contaminants such as nano-polystyrenes (NPs) and heavy metal cocktail (HMC) have been found to disrupt physiological functions in aquatic organisms. Although HMC and NPs alone induce oxidative stress, their combined effects are not well understood. This study aimed to assess the combined effects of HMC and NPs on the freshwater shrimp (Macrobrachium rosenbergii). Shrimp were divided into seven groups, including the control group, and the experimental groups co-exposed to 0, 50, 100, 150, 200, and 250 µg/L NPs combined with 0.5 mg/L HMC. After 14 days, shrimp were sampled, and their hepatopancreas and muscle tissues were analyzed for oxidative biomarkers, biochemical parameters, and metabolic profiles. Moreover, the bioaccumulation rate of heavy metals was measured. Results showed that co-exposure to NPs and HMC increased superoxide dismutase, glutathione peroxidase, glutathione reductase activities, and malondialdehyde levels, while reducing glutathione and total antioxidant capacity. The integrated biomarker response indicated that co-exposure to HMC and NPs induces oxidative stress. A significant decrease was observed in aspartate aminotransferase, gamma-glutamyl transpeptidase, and alkaline phosphatase activities, glycogen, triglyceride, and total protein levels. However, lactate dehydrogenase activity was significantly increased. Co-exposure to HMC and NPs increased heavy metal bioaccumulation, induced oxidative stress, biochemical changes, and enhanced HMC toxicity in shrimp.
期刊介绍:
The Journal of Xenobiotics publishes original studies concerning the beneficial (pharmacology) and detrimental effects (toxicology) of xenobiotics in all organisms. A xenobiotic (“stranger to life”) is defined as a chemical that is not usually found at significant concentrations or expected to reside for long periods in organisms. In addition to man-made chemicals, natural products could also be of interest if they have potent biological properties, special medicinal properties or that a given organism is at risk of exposure in the environment. Topics dealing with abiotic- and biotic-based transformations in various media (xenobiochemistry) and environmental toxicology are also of interest. Areas of interests include the identification of key physical and chemical properties of molecules that predict biological effects and persistence in the environment; the molecular mode of action of xenobiotics; biochemical and physiological interactions leading to change in organism health; pathophysiological interactions of natural and synthetic chemicals; development of biochemical indicators including new “-omics” approaches to identify biomarkers of exposure or effects for xenobiotics.