Development of automatic organ segmentation based on positron-emission tomography analysis system using Swin UNETR in breast cancer patients in Korea.

IF 0.2 Q3 MEDICINE, GENERAL & INTERNAL
Ewha Medical Journal Pub Date : 2025-04-01 Epub Date: 2025-04-02 DOI:10.12771/emj.2025.00094
Dong Hyeok Choi, Joonil Hwang, Hai-Jeon Yoon, So Hyun Ahn
{"title":"Development of automatic organ segmentation based on positron-emission tomography analysis system using Swin UNETR in breast cancer patients in Korea.","authors":"Dong Hyeok Choi, Joonil Hwang, Hai-Jeon Yoon, So Hyun Ahn","doi":"10.12771/emj.2025.00094","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The standardized uptake value (SUV) is a key quantitative index in nuclear medicine imaging; however, variations in region-of-interest (ROI) determination exist across institutions. This study aims to standardize SUV evaluation by introducing a deep learning-based quantitative analysis method that enhances diagnostic and prognostic accuracy.</p><p><strong>Methods: </strong>We used the Swin UNETR model to automatically segment key organs (breast, liver, spleen, and bone marrow) critical for breast cancer prognosis. Tumor segmentation was performed iteratively based on predefined SUV thresholds, and prognostic information was extracted from the liver, spleen, and bone marrow (reticuloendothelial system). The artificial intelligence training process employed 3 datasets: a test dataset (40 patients), a validation dataset (10 patients), and an independent test dataset (10 patients). To validate our approach, we compared the SUV values obtained using our method with those produced by commercial software.</p><p><strong>Results: </strong>In a dataset of 10 patients, our method achieved an auto-segmentation accuracy of 0.9311 for all target organs. Comparison of maximum SUV and mean SUV values from our automated segmentation with those from traditional single-ROI methods revealed differences of 0.19 and 0.16, respectively, demonstrating improved reliability and accuracy in whole-organ SUV analysis.</p><p><strong>Conclusion: </strong>This study successfully standardized SUV calculation in nuclear medicine imaging through deep learning-based automated organ segmentation and SUV analysis, significantly enhancing accuracy in predicting breast cancer prognosis.</p>","PeriodicalId":41392,"journal":{"name":"Ewha Medical Journal","volume":"48 2","pages":"e30"},"PeriodicalIF":0.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12277499/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ewha Medical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12771/emj.2025.00094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: The standardized uptake value (SUV) is a key quantitative index in nuclear medicine imaging; however, variations in region-of-interest (ROI) determination exist across institutions. This study aims to standardize SUV evaluation by introducing a deep learning-based quantitative analysis method that enhances diagnostic and prognostic accuracy.

Methods: We used the Swin UNETR model to automatically segment key organs (breast, liver, spleen, and bone marrow) critical for breast cancer prognosis. Tumor segmentation was performed iteratively based on predefined SUV thresholds, and prognostic information was extracted from the liver, spleen, and bone marrow (reticuloendothelial system). The artificial intelligence training process employed 3 datasets: a test dataset (40 patients), a validation dataset (10 patients), and an independent test dataset (10 patients). To validate our approach, we compared the SUV values obtained using our method with those produced by commercial software.

Results: In a dataset of 10 patients, our method achieved an auto-segmentation accuracy of 0.9311 for all target organs. Comparison of maximum SUV and mean SUV values from our automated segmentation with those from traditional single-ROI methods revealed differences of 0.19 and 0.16, respectively, demonstrating improved reliability and accuracy in whole-organ SUV analysis.

Conclusion: This study successfully standardized SUV calculation in nuclear medicine imaging through deep learning-based automated organ segmentation and SUV analysis, significantly enhancing accuracy in predicting breast cancer prognosis.

Abstract Image

Abstract Image

Abstract Image

基于Swin UNETR的正电子发射断层扫描分析系统在韩国乳腺癌患者中的自动器官分割。
目的:标准化摄取值(SUV)是核医学成像的关键定量指标;然而,各机构之间在利益区域(ROI)确定方面存在差异。本研究旨在通过引入基于深度学习的定量分析方法来规范SUV评估,从而提高诊断和预后的准确性。方法:采用Swin UNETR模型对乳腺癌预后的关键器官(乳腺、肝脏、脾脏和骨髓)进行自动分割。基于预定义的SUV阈值迭代分割肿瘤,并从肝脏、脾脏和骨髓(网状内皮系统)中提取预后信息。人工智能训练过程使用了3个数据集:一个测试数据集(40例患者),一个验证数据集(10例患者)和一个独立的测试数据集(10例患者)。为了验证我们的方法,我们将使用我们的方法获得的SUV值与商业软件产生的值进行了比较。结果:在10例患者的数据集中,我们的方法对所有目标器官的自动分割准确率为0.9311。自动分割得到的最大SUV值和平均SUV值与传统的单一roi方法的差异分别为0.19和0.16,表明全器官SUV分析的可靠性和准确性得到了提高。结论:本研究通过基于深度学习的自动器官分割和SUV分析,成功规范了核医学成像中SUV的计算,显著提高了乳腺癌预后预测的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ewha Medical Journal
Ewha Medical Journal MEDICINE, GENERAL & INTERNAL-
自引率
33.30%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信