{"title":"Impact of Climate Change on Indoor Radon Concentrations as a Current Public Health Challenge","authors":"Ala V. Overcenco*, and , Liuba Ş. Coreţchi, ","doi":"10.1021/envhealth.4c00269","DOIUrl":null,"url":null,"abstract":"<p >Climate change is considered to intensify radon migration into houses, increasing health risks. Energy efficiency strategies can contribute to indoor radon accumulation, particularly in the winter and summer seasons, when buildings are sealed to maintain thermal comfort. Studies in various regions of the world have shown that meteorological factors influence indoor radon concentration either directly or indirectly. Seasonal variations in radon levels have been observed, with winter concentrations exceeding summer levels by 2–5 times, while extreme weather events further impact radon exhalation. Epidemiological data indicate that the increase of indoor radon concentration by 100 Bq/m<sup>3</sup> raises lung cancer risk by 16%, with 35–40% of radon-related lung cancers potentially preventable through exposure reduction. Additionally, recent studies suggest a correlation between radon exposure and cardiovascular diseases, contributing to its significance for public health. Collecting meteorological data alongside indoor radon measurements and analyzing their relationship are essential for understanding such interactions as well as developing public health strategies for prevention and adaptation to future climate conditions. Based on international experience, methodological approaches to the study of the assessment of the influence of meteorological factors on the risk of radon exposure in a regional context have been formulated.</p>","PeriodicalId":29795,"journal":{"name":"Environment & Health","volume":"3 7","pages":"705–713"},"PeriodicalIF":6.3000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12281206/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment & Health","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/envhealth.4c00269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Climate change is considered to intensify radon migration into houses, increasing health risks. Energy efficiency strategies can contribute to indoor radon accumulation, particularly in the winter and summer seasons, when buildings are sealed to maintain thermal comfort. Studies in various regions of the world have shown that meteorological factors influence indoor radon concentration either directly or indirectly. Seasonal variations in radon levels have been observed, with winter concentrations exceeding summer levels by 2–5 times, while extreme weather events further impact radon exhalation. Epidemiological data indicate that the increase of indoor radon concentration by 100 Bq/m3 raises lung cancer risk by 16%, with 35–40% of radon-related lung cancers potentially preventable through exposure reduction. Additionally, recent studies suggest a correlation between radon exposure and cardiovascular diseases, contributing to its significance for public health. Collecting meteorological data alongside indoor radon measurements and analyzing their relationship are essential for understanding such interactions as well as developing public health strategies for prevention and adaptation to future climate conditions. Based on international experience, methodological approaches to the study of the assessment of the influence of meteorological factors on the risk of radon exposure in a regional context have been formulated.
期刊介绍:
Environment & Health a peer-reviewed open access journal is committed to exploring the relationship between the environment and human health.As a premier journal for multidisciplinary research Environment & Health reports the health consequences for individuals and communities of changing and hazardous environmental factors. In supporting the UN Sustainable Development Goals the journal aims to help formulate policies to create a healthier world.Topics of interest include but are not limited to:Air water and soil pollutionExposomicsEnvironmental epidemiologyInnovative analytical methodology and instrumentation (multi-omics non-target analysis effect-directed analysis high-throughput screening etc.)Environmental toxicology (endocrine disrupting effect neurotoxicity alternative toxicology computational toxicology epigenetic toxicology etc.)Environmental microbiology pathogen and environmental transmission mechanisms of diseasesEnvironmental modeling bioinformatics and artificial intelligenceEmerging contaminants (including plastics engineered nanomaterials etc.)Climate change and related health effectHealth impacts of energy evolution and carbon neutralizationFood and drinking water safetyOccupational exposure and medicineInnovations in environmental technologies for better healthPolicies and international relations concerned with environmental health