I Elbatal, Ahmed Elshahhat, H E Semary, Mazen Nassar
{"title":"Reliability assessment of two production lines using joint progressively type-II censored XLindley samples.","authors":"I Elbatal, Ahmed Elshahhat, H E Semary, Mazen Nassar","doi":"10.1038/s41598-025-11493-x","DOIUrl":null,"url":null,"abstract":"<p><p>ssessing the reliability of two production lines, whether individually or simultaneously, is of significant importance for improving manufacturing processes and guaranteeing superior product quality. This paper examines the reliability assessment of two production lines utilizing joint progressively Type-II censored samples derived from the XLindley distribution. In addition to estimating the unknown parameters, the reliability functions for each production line, as well as for both production lines simultaneously, are analyzed. Both classical likelihood-based and Bayesian methodologies are employed for estimation purposes. The maximum likelihood method is applied to obtain point estimates for the unknown parameters and reliability functions, while Bayesian analysis is performed under the squared error loss function, employing the Markov Chain Monte Carlo technique to generate samples from the posterior distribution. The approximate confidence intervals, percentile bootstrap confidence intervals, and the highest posterior density credible intervals for the unknown parameters and various reliability functions are discussed. The problem of selecting the optimal censoring plan is also considered. A comprehensive simulation study is conducted to assess the performance of the proposed methods, comparing the accuracy and efficiency of the estimates across different censoring schemes. Furthermore, the applicability of the proposed methodology is demonstrated through the analysis of two real-world data sets, underscoring its practical utility within the field of reliability. Finally, three criteria, namely A-optimality, D-optimality, and F-optimality, are considered to determine the optimal censoring plan.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"26841"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12287314/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-11493-x","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
ssessing the reliability of two production lines, whether individually or simultaneously, is of significant importance for improving manufacturing processes and guaranteeing superior product quality. This paper examines the reliability assessment of two production lines utilizing joint progressively Type-II censored samples derived from the XLindley distribution. In addition to estimating the unknown parameters, the reliability functions for each production line, as well as for both production lines simultaneously, are analyzed. Both classical likelihood-based and Bayesian methodologies are employed for estimation purposes. The maximum likelihood method is applied to obtain point estimates for the unknown parameters and reliability functions, while Bayesian analysis is performed under the squared error loss function, employing the Markov Chain Monte Carlo technique to generate samples from the posterior distribution. The approximate confidence intervals, percentile bootstrap confidence intervals, and the highest posterior density credible intervals for the unknown parameters and various reliability functions are discussed. The problem of selecting the optimal censoring plan is also considered. A comprehensive simulation study is conducted to assess the performance of the proposed methods, comparing the accuracy and efficiency of the estimates across different censoring schemes. Furthermore, the applicability of the proposed methodology is demonstrated through the analysis of two real-world data sets, underscoring its practical utility within the field of reliability. Finally, three criteria, namely A-optimality, D-optimality, and F-optimality, are considered to determine the optimal censoring plan.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.