{"title":"Single-Nucleus Transcriptomic Sequencing Revealed Cellular and Molecular Changes in a Pilocarpine-Induced Epilepsy Rat Model.","authors":"Ying Wang, Yue Wang, Fei Yu, Yidi Liu, Xin Liu, Zhengxu Cai","doi":"10.1007/s12264-025-01451-y","DOIUrl":null,"url":null,"abstract":"<p><p>Uncovering the underlying process of epileptogenesis is crucial for developing effective treatment strategies for epilepsy. However, the cellular and molecular changes throughout epileptogenesis are not fully understood. In this study, single-nucleus RNA sequencing was performed on the hippocampus, temporal cortex, and thalamus across the acute, latent, and chronic phases in a pilocarpine-induced rat model and controls. We created a comprehensive single-nucleus transcriptomic atlas of rat epileptogenesis, consisting of 311,177 single nuclei. Our analysis revealed distinct transcriptional signatures across the three phases and regions, including significant gene expression changes in the acute phase and critical synaptic and neural network remodeling in the thalamus during the latent phase. Notably, we identified two novel astrocyte clusters during epileptogenesis, with the EX-Astro C3-IN pathway emerging as a potential intervention target. The dataset provides a detailed understanding of the dynamic cellular and molecular landscape of epileptogenesis.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12264-025-01451-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Uncovering the underlying process of epileptogenesis is crucial for developing effective treatment strategies for epilepsy. However, the cellular and molecular changes throughout epileptogenesis are not fully understood. In this study, single-nucleus RNA sequencing was performed on the hippocampus, temporal cortex, and thalamus across the acute, latent, and chronic phases in a pilocarpine-induced rat model and controls. We created a comprehensive single-nucleus transcriptomic atlas of rat epileptogenesis, consisting of 311,177 single nuclei. Our analysis revealed distinct transcriptional signatures across the three phases and regions, including significant gene expression changes in the acute phase and critical synaptic and neural network remodeling in the thalamus during the latent phase. Notably, we identified two novel astrocyte clusters during epileptogenesis, with the EX-Astro C3-IN pathway emerging as a potential intervention target. The dataset provides a detailed understanding of the dynamic cellular and molecular landscape of epileptogenesis.
期刊介绍:
Neuroscience Bulletin (NB), the official journal of the Chinese Neuroscience Society, is published monthly by Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Springer.
NB aims to publish research advances in the field of neuroscience and promote exchange of scientific ideas within the community. The journal publishes original papers on various topics in neuroscience and focuses on potential disease implications on the nervous system. NB welcomes research contributions on molecular, cellular, or developmental neuroscience using multidisciplinary approaches and functional strategies. We feature full-length original articles, reviews, methods, letters to the editor, insights, and research highlights. As the official journal of the Chinese Neuroscience Society, which currently has more than 12,000 members in China, NB is devoted to facilitating communications between Chinese neuroscientists and their international colleagues. The journal is recognized as the most influential publication in neuroscience research in China.