Automated Video Quality Assessment for the Edinburgh Visual Gait Score (EVGS).

IF 2 Q3 BIOCHEMICAL RESEARCH METHODS
Rajkumar Arumugam Jeeva, Edward D Lemaire, Ramiro Olleac, Kevin Cheung, Albert Tu, Natalie Baddour
{"title":"Automated Video Quality Assessment for the Edinburgh Visual Gait Score (EVGS).","authors":"Rajkumar Arumugam Jeeva, Edward D Lemaire, Ramiro Olleac, Kevin Cheung, Albert Tu, Natalie Baddour","doi":"10.3390/mps8040071","DOIUrl":null,"url":null,"abstract":"<p><p>This research addresses critical challenges in clinical gait analysis by developing an automated video quality assessment framework to support Edinburgh Visual Gait Score (EVGS) scoring. The proposed methodology uses the MoveNet Lightning pose estimation model to extract body keypoints from video frames, enabling detection of multiple persons, tracking the person of interest, assessment of plane orientation, identification of overlapping individuals, detection of zoom artifacts, and evaluation of video resolution. These components are integrated into a unified quality classification system using a random forest classifier. The framework achieved high performance across key metrics, with 96% accuracy in detecting multiple persons, 95% in assessing overlaps, and 92% in identifying zoom events, culminating in an overall video quality categorization accuracy of 95%. This performance not only facilitates the automated selection of videos suitable for analysis but also provides specific video improvement suggestions when quality standards are not met. Consequently, the proposed system has the potential to streamline gait analysis workflows, reduce reliance on manual quality checks in clinical practice, and enable automated EVGS scoring by ensuring appropriate video quality as input to the gait scoring system.</p>","PeriodicalId":18715,"journal":{"name":"Methods and Protocols","volume":"8 4","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12286148/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mps8040071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

This research addresses critical challenges in clinical gait analysis by developing an automated video quality assessment framework to support Edinburgh Visual Gait Score (EVGS) scoring. The proposed methodology uses the MoveNet Lightning pose estimation model to extract body keypoints from video frames, enabling detection of multiple persons, tracking the person of interest, assessment of plane orientation, identification of overlapping individuals, detection of zoom artifacts, and evaluation of video resolution. These components are integrated into a unified quality classification system using a random forest classifier. The framework achieved high performance across key metrics, with 96% accuracy in detecting multiple persons, 95% in assessing overlaps, and 92% in identifying zoom events, culminating in an overall video quality categorization accuracy of 95%. This performance not only facilitates the automated selection of videos suitable for analysis but also provides specific video improvement suggestions when quality standards are not met. Consequently, the proposed system has the potential to streamline gait analysis workflows, reduce reliance on manual quality checks in clinical practice, and enable automated EVGS scoring by ensuring appropriate video quality as input to the gait scoring system.

Abstract Image

Abstract Image

Abstract Image

爱丁堡视觉步态评分(EVGS)的自动视频质量评估。
本研究通过开发支持爱丁堡视觉步态评分(EVGS)评分的自动视频质量评估框架,解决了临床步态分析中的关键挑战。提出的方法使用MoveNet闪电姿态估计模型从视频帧中提取身体关键点,从而能够检测多人、跟踪感兴趣的人、评估平面方向、识别重叠的个体、检测变焦伪影以及评估视频分辨率。使用随机森林分类器将这些组件集成到统一的质量分类系统中。该框架在关键指标上实现了高性能,检测多人的准确率为96%,评估重叠的准确率为95%,识别变焦事件的准确率为92%,最终实现了95%的整体视频质量分类准确率。这种性能不仅有助于自动选择适合分析的视频,而且在不符合质量标准时提供具体的视频改进建议。因此,该系统有可能简化步态分析工作流程,减少临床实践中对人工质量检查的依赖,并通过确保适当的视频质量作为步态评分系统的输入,实现自动EVGS评分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Methods and Protocols
Methods and Protocols Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (miscellaneous)
CiteScore
3.60
自引率
0.00%
发文量
85
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信