Letícia Lima Correia, Ariane de Sousa Brasil, Thiago Bernardi Vieira, Magali Gonçalves Garcia, Daniela de Melo E Silva, Ana Beatriz Alencastre-Santos, Danielle Regina Gomes Ribeiro-Brasil
{"title":"A Simple Way to Quantify Plastic in Bats (Mammalia: Chiroptera) Using an Ultraviolet Flashlight.","authors":"Letícia Lima Correia, Ariane de Sousa Brasil, Thiago Bernardi Vieira, Magali Gonçalves Garcia, Daniela de Melo E Silva, Ana Beatriz Alencastre-Santos, Danielle Regina Gomes Ribeiro-Brasil","doi":"10.3390/mps8040080","DOIUrl":null,"url":null,"abstract":"<p><p>Bats, as key ecological players, interact with a diverse array of organisms and perform essential roles in ecosystems, including pollination, pest control, and seed dispersal. However, their populations face significant threats from habitat contamination, particularly from microplastics (MPs). This study introduces a novel, efficient, and cost-effective method for visualizing transparent microplastics using ultraviolet (UV) light. By employing handheld UV flashlights with a wavelength range of 312 to 400 nm, we enhance the detection of MPs that may otherwise go unnoticed due to color overlap with filtration membranes. All necessary precautions were taken during sampling and analysis to minimize the risk of contamination and ensure the reliability of the results. Our findings demonstrate that the application of UV light significantly improves the visualization and identification of MPs, particularly transparent fibers. This innovative approach contributes to our understanding of plastic contamination in bat habitats and underscores the importance of monitoring environmental pollutants to protect bat populations and maintain ecosystem health.</p>","PeriodicalId":18715,"journal":{"name":"Methods and Protocols","volume":"8 4","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12286149/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mps8040080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Bats, as key ecological players, interact with a diverse array of organisms and perform essential roles in ecosystems, including pollination, pest control, and seed dispersal. However, their populations face significant threats from habitat contamination, particularly from microplastics (MPs). This study introduces a novel, efficient, and cost-effective method for visualizing transparent microplastics using ultraviolet (UV) light. By employing handheld UV flashlights with a wavelength range of 312 to 400 nm, we enhance the detection of MPs that may otherwise go unnoticed due to color overlap with filtration membranes. All necessary precautions were taken during sampling and analysis to minimize the risk of contamination and ensure the reliability of the results. Our findings demonstrate that the application of UV light significantly improves the visualization and identification of MPs, particularly transparent fibers. This innovative approach contributes to our understanding of plastic contamination in bat habitats and underscores the importance of monitoring environmental pollutants to protect bat populations and maintain ecosystem health.