{"title":"In silico encounters: harnessing metabolic modelling to understand plant-microbe interactions.","authors":"Martina Feierabend, Nadine Töpfer","doi":"10.1093/femsre/fuaf030","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding plant-microbe interactions is vital for developing sustainable agricultural practices and mitigating the consequences of climate change on food security. Plant-microbe interactions can improve nutrient acquisition, reduce dependency on chemical fertilizers, affect plant health, growth, and yield, and impact plants' resistance to biotic and abiotic stresses. These interactions are largely driven by metabolic exchanges and can thus be understood through metabolic network modelling. Recent developments in genomics, metagenomics, phenotyping, and synthetic biology now enable researchers to harness the potential of metabolic modelling at the genome scale. Here, we review studies that utilize genome-scale metabolic modelling to study plant-microbe interactions in symbiotic, pathogenic, and microbial community systems. This review catalogues how metabolic modelling has advanced our understanding of the plant host and its associated microorganisms as a holobiont. We showcase how these models can contextualize heterogeneous datasets and serve as valuable tools to dissect and quantify underlying mechanisms. Finally, we consider studies that employ metabolic models as a testbed for in silico design of synthetic microbial communities with predefined traits. We conclude by discussing broader implications of the presented studies, future perspectives, and outstanding challenges.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":12.3000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12398279/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology reviews","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsre/fuaf030","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding plant-microbe interactions is vital for developing sustainable agricultural practices and mitigating the consequences of climate change on food security. Plant-microbe interactions can improve nutrient acquisition, reduce dependency on chemical fertilizers, affect plant health, growth, and yield, and impact plants' resistance to biotic and abiotic stresses. These interactions are largely driven by metabolic exchanges and can thus be understood through metabolic network modelling. Recent developments in genomics, metagenomics, phenotyping, and synthetic biology now enable researchers to harness the potential of metabolic modelling at the genome scale. Here, we review studies that utilize genome-scale metabolic modelling to study plant-microbe interactions in symbiotic, pathogenic, and microbial community systems. This review catalogues how metabolic modelling has advanced our understanding of the plant host and its associated microorganisms as a holobiont. We showcase how these models can contextualize heterogeneous datasets and serve as valuable tools to dissect and quantify underlying mechanisms. Finally, we consider studies that employ metabolic models as a testbed for in silico design of synthetic microbial communities with predefined traits. We conclude by discussing broader implications of the presented studies, future perspectives, and outstanding challenges.
期刊介绍:
Title: FEMS Microbiology Reviews
Journal Focus:
Publishes reviews covering all aspects of microbiology not recently surveyed
Reviews topics of current interest
Provides comprehensive, critical, and authoritative coverage
Offers new perspectives and critical, detailed discussions of significant trends
May contain speculative and selective elements
Aimed at both specialists and general readers
Reviews should be framed within the context of general microbiology and biology
Submission Criteria:
Manuscripts should not be unevaluated compilations of literature
Lectures delivered at symposia must review the related field to be acceptable