Mehrab Rafiq, Nouf Abdullah Almujally, Asaad Algarni, Mohammed Alshehri, Yahya AlQahtani, Ahmad Jalal, Hui Liu
{"title":"Intelligent biosensors for human movement rehabilitation and intention recognition.","authors":"Mehrab Rafiq, Nouf Abdullah Almujally, Asaad Algarni, Mohammed Alshehri, Yahya AlQahtani, Ahmad Jalal, Hui Liu","doi":"10.3389/fbioe.2025.1558529","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Advancements in sensing technologies have enabled the integration of inertial sensors, such as accelerometers and gyroscopes, into everyday devices like smartphones and wearables. These sensors, initially intended to enhance device functionality, are now pivotal in applications such as Human Locomotion Recognition (HLR), with relevance in sports, healthcare, rehabilitation, and context-aware systems. This study presents a robust system for accurately recognizing human movement and localization characteristics using sensor data.</p><p><strong>Methods: </strong>Two datasets were used: the Extrasensory dataset and the KU-HAR dataset. The Extrasensory dataset includes multimodal sensor data (IMU, GPS, and audio) from 60 participants, while the KU-HAR dataset provides accelerometer and gyroscope data from 90 participants performing 18 distinct activities. Raw sensor signals were first denoised using a second-order Butterworth filter, and segmentation was performed using Hamming windows. Feature extraction included Skewness, Energy, Kurtosis, Linear Prediction Cepstral Coefficients (LPCC), and Dynamic Time Warping (DTW) for locomotion, as well as Step Count and Step Length for localization. Yeo-Johnson power transformation was employed to optimize the extracted features.</p><p><strong>Results: </strong>The proposed system achieved 90% accuracy on the Extrasensory dataset and 91% on the KU-HAR dataset. These results surpass the performance of several existing state-of-the-art methods. Statistical analysis and additional testing confirmed the robustness and generalization capabilities of the model across both datasets.</p><p><strong>Discussion: </strong>The developed system demonstrates strong performance in recognizing human locomotion and localization across different sensor environments, even when dealing with noisy data. Its effectiveness in real-world scenarios highlights its potential for integration into healthcare monitoring, physical rehabilitation, and intelligent wearable systems. The model's scalability and high accuracy support its applicability for deployment on embedded platforms in future implementations.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"13 ","pages":"1558529"},"PeriodicalIF":4.8000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12283989/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2025.1558529","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Advancements in sensing technologies have enabled the integration of inertial sensors, such as accelerometers and gyroscopes, into everyday devices like smartphones and wearables. These sensors, initially intended to enhance device functionality, are now pivotal in applications such as Human Locomotion Recognition (HLR), with relevance in sports, healthcare, rehabilitation, and context-aware systems. This study presents a robust system for accurately recognizing human movement and localization characteristics using sensor data.
Methods: Two datasets were used: the Extrasensory dataset and the KU-HAR dataset. The Extrasensory dataset includes multimodal sensor data (IMU, GPS, and audio) from 60 participants, while the KU-HAR dataset provides accelerometer and gyroscope data from 90 participants performing 18 distinct activities. Raw sensor signals were first denoised using a second-order Butterworth filter, and segmentation was performed using Hamming windows. Feature extraction included Skewness, Energy, Kurtosis, Linear Prediction Cepstral Coefficients (LPCC), and Dynamic Time Warping (DTW) for locomotion, as well as Step Count and Step Length for localization. Yeo-Johnson power transformation was employed to optimize the extracted features.
Results: The proposed system achieved 90% accuracy on the Extrasensory dataset and 91% on the KU-HAR dataset. These results surpass the performance of several existing state-of-the-art methods. Statistical analysis and additional testing confirmed the robustness and generalization capabilities of the model across both datasets.
Discussion: The developed system demonstrates strong performance in recognizing human locomotion and localization across different sensor environments, even when dealing with noisy data. Its effectiveness in real-world scenarios highlights its potential for integration into healthcare monitoring, physical rehabilitation, and intelligent wearable systems. The model's scalability and high accuracy support its applicability for deployment on embedded platforms in future implementations.
期刊介绍:
The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs.
In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.