Polypeptide Single-Chain Nanoparticle Derived Artificial Enzyme.

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Yongjia Yang, Hesong Wang, Song Hong, Haimei Zhu, Xiaojun Jiang, Linxin Ge, Yu-Ang Cui, Kai Yuan, Zhenzhong Yang, Bingyin Jiang
{"title":"Polypeptide Single-Chain Nanoparticle Derived Artificial Enzyme.","authors":"Yongjia Yang, Hesong Wang, Song Hong, Haimei Zhu, Xiaojun Jiang, Linxin Ge, Yu-Ang Cui, Kai Yuan, Zhenzhong Yang, Bingyin Jiang","doi":"10.1002/adhm.202502053","DOIUrl":null,"url":null,"abstract":"<p><p>Polyamino acids synthesized via ring-opening polymerization (ROP) of N-carboxyanhydride (NCA) monomers offer a scalable route to functional polypeptides, but the lack of sequence specificity limits their ability to fold and function like natural enzymes. Here, a series of artificial enzymes is developed based on single-chain nanoparticles (SCNPs) formed through intramolecular folding of a triblock copolypeptide, polyethylene glycol-b-poly(L-glutamic acid)-b-poly(oligo(ethylene glycol)-L-glutamate) (PEG<sub>113</sub>-b-PGlu<sub>112</sub>-b-P(Glu-EG<sub>2</sub>)<sub>99</sub>). The central poly-Glu block is intramolecularly cross-linked via coordination with transition metal ions (Fe<sup>2+</sup>/Fe<sup>3+</sup>, Mn<sup>2+</sup>, Co<sup>2+</sup>, Cu<sup>2+</sup>/Zn<sup>2+</sup>), mimicking the natural folding of polypeptides into proteins. Co-precipitation with ammonia water generates metal/alloy oxide nanoclusters within the cross-linked polyGlu domain, providing a large surface-to-volume ratio. The metal oxide nanoclusters function as coenzymes. They not only facilitate a structural transition from α-helices to β-strands within the cross-linked polyGlu domain but also demonstrate specific peroxidase (POD) or superoxide dismutase (SOD) activities, which are tailored to the specific metal species involved. The FeOx-complexed artificial enzyme (Fe-enzyme) is selected to exemplify its therapeutic effects of mitigating oxidative stress and inflammation in a rheumatoid arthritis mouse model. These artificial enzymes feature a soft, degradable polypeptide skeleton, tunable side-chain functionalities, high enzyme-like activity with minimal metal content (< 5 wt.%), and secondary structures similar to natural proteins.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e02053"},"PeriodicalIF":10.0000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202502053","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Polyamino acids synthesized via ring-opening polymerization (ROP) of N-carboxyanhydride (NCA) monomers offer a scalable route to functional polypeptides, but the lack of sequence specificity limits their ability to fold and function like natural enzymes. Here, a series of artificial enzymes is developed based on single-chain nanoparticles (SCNPs) formed through intramolecular folding of a triblock copolypeptide, polyethylene glycol-b-poly(L-glutamic acid)-b-poly(oligo(ethylene glycol)-L-glutamate) (PEG113-b-PGlu112-b-P(Glu-EG2)99). The central poly-Glu block is intramolecularly cross-linked via coordination with transition metal ions (Fe2+/Fe3+, Mn2+, Co2+, Cu2+/Zn2+), mimicking the natural folding of polypeptides into proteins. Co-precipitation with ammonia water generates metal/alloy oxide nanoclusters within the cross-linked polyGlu domain, providing a large surface-to-volume ratio. The metal oxide nanoclusters function as coenzymes. They not only facilitate a structural transition from α-helices to β-strands within the cross-linked polyGlu domain but also demonstrate specific peroxidase (POD) or superoxide dismutase (SOD) activities, which are tailored to the specific metal species involved. The FeOx-complexed artificial enzyme (Fe-enzyme) is selected to exemplify its therapeutic effects of mitigating oxidative stress and inflammation in a rheumatoid arthritis mouse model. These artificial enzymes feature a soft, degradable polypeptide skeleton, tunable side-chain functionalities, high enzyme-like activity with minimal metal content (< 5 wt.%), and secondary structures similar to natural proteins.

多肽单链纳米颗粒衍生的人工酶。
通过n -羧基氢化物(NCA)单体的开环聚合(ROP)合成的多氨基酸提供了一种可扩展的功能多肽途径,但缺乏序列特异性限制了它们像天然酶一样折叠和功能的能力。本研究以三嵌段共肽聚乙二醇-b-聚(l-谷氨酸)-b-聚低聚(乙二醇)- l-谷氨酸(PEG113-b-PGlu112-b-P(glu2 - eg2)99)分子内折叠形成的单链纳米颗粒(SCNPs)为基础,开发了一系列人工酶。中心聚谷氨酸块通过与过渡金属离子(Fe2+/Fe3+, Mn2+, Co2+, Cu2+/Zn2+)配位在分子内交联,模拟多肽自然折叠成蛋白质。与氨水共沉淀在交联的polyGlu畴内生成金属/合金氧化物纳米团簇,提供了较大的表面体积比。金属氧化物纳米团簇具有辅酶的功能。它们不仅促进了交联poly - glu结构域中α-螺旋到β-链的结构转变,而且还显示出特定的过氧化物酶(POD)或超氧化物歧化酶(SOD)活性,这些活性是为特定的金属物种定制的。在类风湿关节炎小鼠模型中,选择feox络合人工酶(fe -酶)来举例说明其减轻氧化应激和炎症的治疗作用。这些人工酶具有柔软,可降解的多肽骨架,可调节的侧链功能,高酶样活性,金属含量最低(< 5 wt.%),二级结构与天然蛋白质相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信