Astrocyte-Targeted connexin43 Hemichannel Inhibition Prevents Radiation-Induced Energy Transporter Decrease in Neurons and Astrocytic proBDNF Transport to Synapses
Steffi Schumacher, Sara Neyt, Christian Vanhove, Lien De Schaepmeester, Robrecht Raedt, Katja Witschas, Luc Leybaert
{"title":"Astrocyte-Targeted connexin43 Hemichannel Inhibition Prevents Radiation-Induced Energy Transporter Decrease in Neurons and Astrocytic proBDNF Transport to Synapses","authors":"Steffi Schumacher, Sara Neyt, Christian Vanhove, Lien De Schaepmeester, Robrecht Raedt, Katja Witschas, Luc Leybaert","doi":"10.1002/glia.70063","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Radiation therapy is widely used for treating brain tumors but also comes with off-target effects, including vascular blood–brain barrier (BBB) leakage occurring as an early event 24 h postirradiation. Here we investigated brain X-irradiation (20 Gy) effects on the astrocyte-neuronal axis starting from BBB endothelium and ending at synapses. Making use of immune-characterization of brain slices isolated 24 h after irradiation of rodents, we found significantly decreased neuronal expression of GLUT3 glucose transporters and MCT2 monocarboxylate transporters in M1/S1 cortical areas, with no changes in astrocytic GLUT1 transporters. Pre-irradiation animal treatment with the Cx43 hemichannel blocker TATGap19 targeting astrocytes completely prevented these neuronal alterations. Brain uptake of <sup>18</sup>F-deoxy-glucose was decreased in the pre- and infra-limbic cortex 24 h postirradiation, not in other cortical areas, and was prevented by TATGap19 treatment. Electro-encephalographic recordings showed decreased power in delta, theta, beta, and gamma bands, most clearly in S1 cortex 24 h postirradiation. ProBDNF, a precursor of brain-derived neurotrophic factor associated with negative neural effects, was significantly elevated 24 h postirradiation and accompanied by strong activation of its vesicular transport in astrocytes. In particular, proBDNF uptake in astrocytic endfeet at capillary endothelial cells and its VAMP3-associated release at astrocytic extensions to tripartite synapses were both strongly increased and prevented by animal pretreatment with TATGap19. The present data show that astrocytes are a major target for radiotherapeutic intervention whereby Gap19 inhibition of the Cx43 hemichannel membrane leakage pathway prevents radiation-induced alterations in brain glucose handling and activation of vesicular proBDNF transport to tripartite synapses that disturb neural functioning.</p>\n </div>","PeriodicalId":174,"journal":{"name":"Glia","volume":"73 11","pages":"2221-2235"},"PeriodicalIF":5.1000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glia","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/glia.70063","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Radiation therapy is widely used for treating brain tumors but also comes with off-target effects, including vascular blood–brain barrier (BBB) leakage occurring as an early event 24 h postirradiation. Here we investigated brain X-irradiation (20 Gy) effects on the astrocyte-neuronal axis starting from BBB endothelium and ending at synapses. Making use of immune-characterization of brain slices isolated 24 h after irradiation of rodents, we found significantly decreased neuronal expression of GLUT3 glucose transporters and MCT2 monocarboxylate transporters in M1/S1 cortical areas, with no changes in astrocytic GLUT1 transporters. Pre-irradiation animal treatment with the Cx43 hemichannel blocker TATGap19 targeting astrocytes completely prevented these neuronal alterations. Brain uptake of 18F-deoxy-glucose was decreased in the pre- and infra-limbic cortex 24 h postirradiation, not in other cortical areas, and was prevented by TATGap19 treatment. Electro-encephalographic recordings showed decreased power in delta, theta, beta, and gamma bands, most clearly in S1 cortex 24 h postirradiation. ProBDNF, a precursor of brain-derived neurotrophic factor associated with negative neural effects, was significantly elevated 24 h postirradiation and accompanied by strong activation of its vesicular transport in astrocytes. In particular, proBDNF uptake in astrocytic endfeet at capillary endothelial cells and its VAMP3-associated release at astrocytic extensions to tripartite synapses were both strongly increased and prevented by animal pretreatment with TATGap19. The present data show that astrocytes are a major target for radiotherapeutic intervention whereby Gap19 inhibition of the Cx43 hemichannel membrane leakage pathway prevents radiation-induced alterations in brain glucose handling and activation of vesicular proBDNF transport to tripartite synapses that disturb neural functioning.
期刊介绍:
GLIA is a peer-reviewed journal, which publishes articles dealing with all aspects of glial structure and function. This includes all aspects of glial cell biology in health and disease.