Quasi-Φ0-Periodic Supercurrent at Quantum Hall Transitions.

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-07-24 DOI:10.1021/acsnano.5c05294
Ivan Villani, Matteo Carrega, Alessandro Crippa, Elia Strambini, Francesco Giazotto, Vaidotas Mišeikis, Camilla Coletti, Fabio Beltram, Kenji Watanabe, Takashi Taniguchi, Stefan Heun, Sergio Pezzini
{"title":"Quasi-Φ<sub>0</sub>-Periodic Supercurrent at Quantum Hall Transitions.","authors":"Ivan Villani, Matteo Carrega, Alessandro Crippa, Elia Strambini, Francesco Giazotto, Vaidotas Mišeikis, Camilla Coletti, Fabio Beltram, Kenji Watanabe, Takashi Taniguchi, Stefan Heun, Sergio Pezzini","doi":"10.1021/acsnano.5c05294","DOIUrl":null,"url":null,"abstract":"<p><p>The combination of superconductivity and quantum Hall (QH) effect is regarded as a key milestone in advancing topological quantum computation in solid-state systems. Recent quantum interference studies suggest that QH edge states can effectively mediate a supercurrent across high-quality graphene weak links. In this work we report the observation of a supercurrent associated with transitions between adjacent QH plateaus, where transport paths develop within the compressible two-dimensional bulk. We employ a back-gated graphene Josephson junction, comprising high-mobility CVD-grown graphene encapsulated in hexagonal Boron Nitride (hBN) and contacted by Nb leads. Superconducting pockets are detected persisting beyond the QH onset, up to 2.4 T, hence approaching the upper critical field of the Nb contacts. We observe an approximate Φ<sub>0</sub> = <i>h</i>/2<i>e</i> periodicity of the QH-supercurrent as a function of the magnetic field, indicating superconducting interference in a proximitized percolative phase. These results provide a promising experimental platform to investigate the transport regime of percolative supercurrents, leveraging the flexibility of van der Waals devices.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c05294","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The combination of superconductivity and quantum Hall (QH) effect is regarded as a key milestone in advancing topological quantum computation in solid-state systems. Recent quantum interference studies suggest that QH edge states can effectively mediate a supercurrent across high-quality graphene weak links. In this work we report the observation of a supercurrent associated with transitions between adjacent QH plateaus, where transport paths develop within the compressible two-dimensional bulk. We employ a back-gated graphene Josephson junction, comprising high-mobility CVD-grown graphene encapsulated in hexagonal Boron Nitride (hBN) and contacted by Nb leads. Superconducting pockets are detected persisting beyond the QH onset, up to 2.4 T, hence approaching the upper critical field of the Nb contacts. We observe an approximate Φ0 = h/2e periodicity of the QH-supercurrent as a function of the magnetic field, indicating superconducting interference in a proximitized percolative phase. These results provide a promising experimental platform to investigate the transport regime of percolative supercurrents, leveraging the flexibility of van der Waals devices.

准-Φ0-Periodic量子霍尔跃迁中的超电流。
超导性与量子霍尔效应的结合被认为是推进固态系统拓扑量子计算的一个重要里程碑。最近的量子干涉研究表明,QH边缘态可以有效地介导高质量石墨烯弱链路上的超电流。在这项工作中,我们报告了与相邻QH高原之间过渡相关的超电流的观察,其中传输路径在可压缩的二维体中发展。我们采用背门控石墨烯约瑟夫森结,包括封装在六方氮化硼(hBN)中的高迁移率cvd生长石墨烯,并与Nb引线接触。超导袋被检测到持续超过QH开始,高达2.4 T,因此接近Nb触点的上部临界场。我们观察到qh超电流的近似Φ0 = h/2e周期作为磁场的函数,表明超导干涉在近似的渗透相中。这些结果为利用范德华装置的灵活性来研究渗透超流的输运机制提供了一个有希望的实验平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信