Veronika Wohlmuthova, Michal Labuda, Mariana Benova
{"title":"A low-cost portable system for 3-Axis measurement of static and extremely low frequency magnetic fields","authors":"Veronika Wohlmuthova, Michal Labuda, Mariana Benova","doi":"10.1016/j.ohx.2025.e00683","DOIUrl":null,"url":null,"abstract":"<div><div>Magnetic fields play a crucial role in modern science and technology - yet precise and accessible tools for their measurement remain limited, especially for small laboratories, educators, or independent researchers. This paper introduces a novel, open-source magnetic field measurement system based on three-axis sensors for monitoring both direct and extremely low frequency magnetic fields. The device features a modular hardware design centered around a custom PCB, enabling flexible analog filtering, Bluetooth data transmission, and offline LCD visualization. By combining the MC858 and MPU9250 sensors with precise analog signal conditioning and a 12-bit ADC, the system ensures reliable detection of magnetic fields including the 50 Hz mains frequency and its harmonics. To verify the functionality of the device, experimental measurements were conducted inside a Faraday cage using a common hair dryer placed at distances of 1 cm and 3 cm from the sensors as a source of electromagnetic field. Frequency analysis confirmed reliable detection of the dominant 50 Hz component and its harmonics, as well as the system’s ability to distinguish changes in field intensity based on distance and operating state of the source device.</div></div>","PeriodicalId":37503,"journal":{"name":"HardwareX","volume":"23 ","pages":"Article e00683"},"PeriodicalIF":2.0000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HardwareX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468067225000616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetic fields play a crucial role in modern science and technology - yet precise and accessible tools for their measurement remain limited, especially for small laboratories, educators, or independent researchers. This paper introduces a novel, open-source magnetic field measurement system based on three-axis sensors for monitoring both direct and extremely low frequency magnetic fields. The device features a modular hardware design centered around a custom PCB, enabling flexible analog filtering, Bluetooth data transmission, and offline LCD visualization. By combining the MC858 and MPU9250 sensors with precise analog signal conditioning and a 12-bit ADC, the system ensures reliable detection of magnetic fields including the 50 Hz mains frequency and its harmonics. To verify the functionality of the device, experimental measurements were conducted inside a Faraday cage using a common hair dryer placed at distances of 1 cm and 3 cm from the sensors as a source of electromagnetic field. Frequency analysis confirmed reliable detection of the dominant 50 Hz component and its harmonics, as well as the system’s ability to distinguish changes in field intensity based on distance and operating state of the source device.
HardwareXEngineering-Industrial and Manufacturing Engineering
CiteScore
4.10
自引率
18.20%
发文量
124
审稿时长
24 weeks
期刊介绍:
HardwareX is an open access journal established to promote free and open source designing, building and customizing of scientific infrastructure (hardware). HardwareX aims to recognize researchers for the time and effort in developing scientific infrastructure while providing end-users with sufficient information to replicate and validate the advances presented. HardwareX is open to input from all scientific, technological and medical disciplines. Scientific infrastructure will be interpreted in the broadest sense. Including hardware modifications to existing infrastructure, sensors and tools that perform measurements and other functions outside of the traditional lab setting (such as wearables, air/water quality sensors, and low cost alternatives to existing tools), and the creation of wholly new tools for either standard or novel laboratory tasks. Authors are encouraged to submit hardware developments that address all aspects of science, not only the final measurement, for example, enhancements in sample preparation and handling, user safety, and quality control. The use of distributed digital manufacturing strategies (e.g. 3-D printing) is encouraged. All designs must be submitted under an open hardware license.