{"title":"High-fat diet may increase the risk of insulin resistance by inducing dysbiosis","authors":"Ebrahim Abbasi, Iraj Khodadadi","doi":"10.1016/j.metop.2025.100381","DOIUrl":null,"url":null,"abstract":"<div><div>High-fat diet (HFD) poses various health risks, such as obesity, insulin resistance (IR), fatty liver, gut microbiota dysbiosis, cognitive impairment, inflammation, and oxidative stress. HFD can alter gastrointestinal function and structure, resulting in changes of the intestinal mucosa, gastric secretions, intestinal connective tissue, intestinal motility, intestinal metabolomics profiles, and intestinal microbiota. The intestine and its microbiota process nutrients and produce molecules that can regulate insulin action and secretion. Changes in the gut microbiome (dysbiosis) and their products may have long-term effects that are not fully understood. Gut microbiota have long been documented to induce metabolic endotoxemia by releasing lipopolysaccharide, which causes systemic inflammation and insulin resistance (IR). HFD may has direct roles in the development of insulin resistance (IR). HFD can induce dysbiosis by reducing SCFAs and decreasing the activation of free fatty acid receptors (FFARs). Furthermore, HFD can increase the activation of the toll-like receptor (TLR) pathway. Hence, HFD by inducing inflammation, oxidative stress, endotoxemia, and hyperglycemia can increase the risk of IR. Therefore, this review aims to delineate the role of gut microbiota directly or indirectly involved in HFD-induced IR. These findings may clarify valuable preventive and therapeutic targets for countermeasures to IR in people who use the Western diet.</div></div>","PeriodicalId":94141,"journal":{"name":"Metabolism open","volume":"27 ","pages":"Article 100381"},"PeriodicalIF":2.7000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolism open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589936825000374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
High-fat diet (HFD) poses various health risks, such as obesity, insulin resistance (IR), fatty liver, gut microbiota dysbiosis, cognitive impairment, inflammation, and oxidative stress. HFD can alter gastrointestinal function and structure, resulting in changes of the intestinal mucosa, gastric secretions, intestinal connective tissue, intestinal motility, intestinal metabolomics profiles, and intestinal microbiota. The intestine and its microbiota process nutrients and produce molecules that can regulate insulin action and secretion. Changes in the gut microbiome (dysbiosis) and their products may have long-term effects that are not fully understood. Gut microbiota have long been documented to induce metabolic endotoxemia by releasing lipopolysaccharide, which causes systemic inflammation and insulin resistance (IR). HFD may has direct roles in the development of insulin resistance (IR). HFD can induce dysbiosis by reducing SCFAs and decreasing the activation of free fatty acid receptors (FFARs). Furthermore, HFD can increase the activation of the toll-like receptor (TLR) pathway. Hence, HFD by inducing inflammation, oxidative stress, endotoxemia, and hyperglycemia can increase the risk of IR. Therefore, this review aims to delineate the role of gut microbiota directly or indirectly involved in HFD-induced IR. These findings may clarify valuable preventive and therapeutic targets for countermeasures to IR in people who use the Western diet.