Exploring Energy Conservation in Sulphate-Dependent Anaerobic Methane-Oxidising Consortia Through Metabolic Modelling

IF 4 2区 生物学 Q2 MICROBIOLOGY
Gordon Bowman, Zena Jensvold, Qusheng Jin
{"title":"Exploring Energy Conservation in Sulphate-Dependent Anaerobic Methane-Oxidising Consortia Through Metabolic Modelling","authors":"Gordon Bowman,&nbsp;Zena Jensvold,&nbsp;Qusheng Jin","doi":"10.1111/1462-2920.70156","DOIUrl":null,"url":null,"abstract":"<p>Anaerobic oxidation of methane (AOM) coupled with sulphate reduction (SR) is a crucial microbial process that mitigates methane emissions, a major contributor to climate change. However, the bioenergetics underlying this process remains poorly understood. Here, we present a metabolic model to quantify energy fluxes and conservation in AOM consortia by integrating enzyme-level thermodynamics and kinetics. Unlike previous models that impose artificial constraints on energy conservation kinetics and efficiency, our approach mechanistically predicts ATP yields and energy efficiencies. We show that both anaerobic methanotrophic archaea (ANME) and sulphate-reducing bacteria (SRB) invest energy in substrate activation, synthesising ATP with comparable yields (0.23–0.24 mol ATP per mol methane or sulphate), while achieving remarkable thermodynamic efficiency (~60%). However, ANME exhibit a higher return on investment (ROI, 18%) than SRB (11%) due to more efficient substrate activation. These findings highlight fundamental bioenergetic constraints governing methane oxidation and SR in anoxic environments, enhancing our understanding of how microbial processes regulate methane fluxes in natural ecosystems. By providing a quantitative framework for microbial energy conservation, our study advances biogeochemical modelling and informs strategies for methane mitigation in marine sediments and other anaerobic environments critical to climate regulation.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 7","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70156","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://enviromicro-journals.onlinelibrary.wiley.com/doi/10.1111/1462-2920.70156","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Anaerobic oxidation of methane (AOM) coupled with sulphate reduction (SR) is a crucial microbial process that mitigates methane emissions, a major contributor to climate change. However, the bioenergetics underlying this process remains poorly understood. Here, we present a metabolic model to quantify energy fluxes and conservation in AOM consortia by integrating enzyme-level thermodynamics and kinetics. Unlike previous models that impose artificial constraints on energy conservation kinetics and efficiency, our approach mechanistically predicts ATP yields and energy efficiencies. We show that both anaerobic methanotrophic archaea (ANME) and sulphate-reducing bacteria (SRB) invest energy in substrate activation, synthesising ATP with comparable yields (0.23–0.24 mol ATP per mol methane or sulphate), while achieving remarkable thermodynamic efficiency (~60%). However, ANME exhibit a higher return on investment (ROI, 18%) than SRB (11%) due to more efficient substrate activation. These findings highlight fundamental bioenergetic constraints governing methane oxidation and SR in anoxic environments, enhancing our understanding of how microbial processes regulate methane fluxes in natural ecosystems. By providing a quantitative framework for microbial energy conservation, our study advances biogeochemical modelling and informs strategies for methane mitigation in marine sediments and other anaerobic environments critical to climate regulation.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

通过代谢模型探索硫酸盐依赖性厌氧甲烷氧化联合体的能量节约
甲烷的厌氧氧化(AOM)和硫酸盐还原(SR)是减少甲烷排放的关键微生物过程,甲烷是气候变化的主要因素。然而,这一过程背后的生物能量学仍然知之甚少。在这里,我们提出了一个代谢模型,通过整合酶水平热力学和动力学来量化AOM群体的能量通量和守恒。不像以前的模型强加人为约束的能量守恒动力学和效率,我们的方法机械地预测ATP产量和能源效率。我们发现厌氧甲烷营养古菌(ANME)和硫酸盐还原菌(SRB)都在底物激活上投入能量,以相当的产量合成ATP(每mol甲烷或硫酸盐0.23-0.24 mol ATP),同时获得显着的热力学效率(~60%)。然而,由于更有效的底物激活,ANME的投资回报率(ROI, 18%)比SRB(11%)更高。这些发现强调了在缺氧环境中控制甲烷氧化和SR的基本生物能量约束,增强了我们对自然生态系统中微生物过程如何调节甲烷通量的理解。通过提供微生物节能的定量框架,我们的研究推进了生物地球化学建模,并为海洋沉积物和其他对气候调节至关重要的厌氧环境中的甲烷减排策略提供了信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental microbiology
Environmental microbiology 环境科学-微生物学
CiteScore
9.90
自引率
3.90%
发文量
427
审稿时长
2.3 months
期刊介绍: Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following: the structure, activities and communal behaviour of microbial communities microbial community genetics and evolutionary processes microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors microbes in the tree of life, microbial diversification and evolution population biology and clonal structure microbial metabolic and structural diversity microbial physiology, growth and survival microbes and surfaces, adhesion and biofouling responses to environmental signals and stress factors modelling and theory development pollution microbiology extremophiles and life in extreme and unusual little-explored habitats element cycles and biogeochemical processes, primary and secondary production microbes in a changing world, microbially-influenced global changes evolution and diversity of archaeal and bacterial viruses new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信