Spatiotemporal Gap-Filling of NASA Deep Blue Satellite Aerosol Optical Depth Over the Contiguous United States (CONUS) Using the UNet 3+ Architecture

IF 2.9 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
Jeffrey S. M. Lee, S. Marcela Loría-Salazar, Heather A. Holmes, Andrew M. Sayer
{"title":"Spatiotemporal Gap-Filling of NASA Deep Blue Satellite Aerosol Optical Depth Over the Contiguous United States (CONUS) Using the UNet 3+ Architecture","authors":"Jeffrey S. M. Lee,&nbsp;S. Marcela Loría-Salazar,&nbsp;Heather A. Holmes,&nbsp;Andrew M. Sayer","doi":"10.1029/2025EA004338","DOIUrl":null,"url":null,"abstract":"<p>Due to sensor and algorithmic constraints, satellite aerosol optical depth (AOD) retrievals are spatially incomplete and have gaps caused by clouds and bright surfaces. These gaps represent a barrier in characterizing daily aerosol loadings, which is important for air quality applications. In particular, recent studies in aerosol studies have shown satellite AOD to be a useful predictor of particulate matter, but are often limited to monthly or longer temporal resolution because of missing AOD retrievals. In this study, we propose using a UNet 3+ to fill gaps in satellite AOD retrievals. We tested the hypothesis that UNet 3+ trained on deep blue (DB) AOD and supplemental data sets (e.g., Modern-Era Retrospective analysis for Research and Applications, Version 2 reanalysis AOD, meteorological and land-use variables from North American Mesoscale Forecast System, and Hazard Mapping System smoke polygons) will improve the availability of AOD data accurately. We created spatiotemporal data sets of daily, gap-filled DB AOD from 2012 to 2023 over the CONtinental United States (CONUS) at a 12 × 12 km<sup>2</sup> resolution. We were able to train the model and perform the gap-filling in ∼10 hr, resulting in an increase of AOD data availability by 281%. We demonstrated that our approach is feasible over CONUS through quantitative and qualitative evaluations against AERONET and DB AOD. In statistical evaluations, our gap-filled AOD data set attained an RMSE ∼ 0.09 and a <i>r</i> ∼ 0.87 against collocated AERONET retrievals, compared to an RMSE ∼ 0.11 and a <i>r</i> ∼ 0.86 that the original DB AOD retrievals scored against AERONET. We plan to use this data set for future air quality and health investigations.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 7","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025EA004338","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025EA004338","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Due to sensor and algorithmic constraints, satellite aerosol optical depth (AOD) retrievals are spatially incomplete and have gaps caused by clouds and bright surfaces. These gaps represent a barrier in characterizing daily aerosol loadings, which is important for air quality applications. In particular, recent studies in aerosol studies have shown satellite AOD to be a useful predictor of particulate matter, but are often limited to monthly or longer temporal resolution because of missing AOD retrievals. In this study, we propose using a UNet 3+ to fill gaps in satellite AOD retrievals. We tested the hypothesis that UNet 3+ trained on deep blue (DB) AOD and supplemental data sets (e.g., Modern-Era Retrospective analysis for Research and Applications, Version 2 reanalysis AOD, meteorological and land-use variables from North American Mesoscale Forecast System, and Hazard Mapping System smoke polygons) will improve the availability of AOD data accurately. We created spatiotemporal data sets of daily, gap-filled DB AOD from 2012 to 2023 over the CONtinental United States (CONUS) at a 12 × 12 km2 resolution. We were able to train the model and perform the gap-filling in ∼10 hr, resulting in an increase of AOD data availability by 281%. We demonstrated that our approach is feasible over CONUS through quantitative and qualitative evaluations against AERONET and DB AOD. In statistical evaluations, our gap-filled AOD data set attained an RMSE ∼ 0.09 and a r ∼ 0.87 against collocated AERONET retrievals, compared to an RMSE ∼ 0.11 and a r ∼ 0.86 that the original DB AOD retrievals scored against AERONET. We plan to use this data set for future air quality and health investigations.

Abstract Image

利用UNet 3+架构对美国连续美国(CONUS)上空NASA深蓝卫星气溶胶光学深度的时空空白填充
由于传感器和算法的限制,卫星气溶胶光学深度(AOD)反演在空间上是不完整的,并且存在由云层和明亮表面引起的间隙。这些差距代表了表征日常气溶胶负荷的障碍,这对空气质量应用很重要。特别是,最近在气溶胶研究方面的研究表明,卫星AOD是一个有用的颗粒物预测指标,但由于缺少AOD检索,通常仅限于每月或更长时间的分辨率。在本研究中,我们建议使用UNet 3+来填补卫星AOD检索的空白。我们测试了基于深蓝(DB) AOD和补充数据集(例如,现代研究和应用回顾性分析,版本2再分析AOD,来自北美中尺度预报系统的气象和土地利用变量以及危害地图系统烟雾多边形)的UNet 3+训练的假设,将准确提高AOD数据的可用性。我们以12 × 12 km2的分辨率创建了2012 - 2023年美国大陆(CONUS)上每日空白填充DB AOD的时空数据集。我们能够在约10小时内训练模型并执行空白填充,从而使AOD数据可用性提高281%。通过对AERONET和DB AOD的定量和定性评估,我们证明了我们的方法在CONUS上是可行的。在统计评估中,我们的空白填充AOD数据集对并置AERONET检索的RMSE ~ 0.09和r ~ 0.87,而原始DB AOD检索对AERONET的评分为RMSE ~ 0.11和r ~ 0.86。我们计划将这些数据集用于未来的空气质量和健康调查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Earth and Space Science
Earth and Space Science Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
5.50
自引率
3.20%
发文量
285
审稿时长
19 weeks
期刊介绍: Marking AGU’s second new open access journal in the last 12 months, Earth and Space Science is the only journal that reflects the expansive range of science represented by AGU’s 62,000 members, including all of the Earth, planetary, and space sciences, and related fields in environmental science, geoengineering, space engineering, and biogeochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信