Suyash Bire, Björn Lütjens, Kamyar Azizzadenesheli, Animashree Anandkumar, Chris Hill
{"title":"Ocean Emulation With Fourier Neural Operators: Double Gyre","authors":"Suyash Bire, Björn Lütjens, Kamyar Azizzadenesheli, Animashree Anandkumar, Chris Hill","doi":"10.1029/2023MS004137","DOIUrl":null,"url":null,"abstract":"<p>A data-driven emulator for the baroclinic double gyre ocean simulation is presented in this study. Traditional numerical simulations using partial differential equations (PDEs) often require substantial computational resources, hindering real-time applications and inhibiting model scalability. This study presents a novel approach employing Fourier neural operators to address these challenges in an idealized double-gyre ocean simulation. We propose a deep learning approach capable of learning the underlying dynamics of the ocean system, complementing the classical methods. Additionally, we show how Fourier neural operators allow us to train the network at one resolution and generate ensembles at a different resolution. We find that there is an intermediate time scale where the prediction skill is maximized.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"17 7","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS004137","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023MS004137","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
A data-driven emulator for the baroclinic double gyre ocean simulation is presented in this study. Traditional numerical simulations using partial differential equations (PDEs) often require substantial computational resources, hindering real-time applications and inhibiting model scalability. This study presents a novel approach employing Fourier neural operators to address these challenges in an idealized double-gyre ocean simulation. We propose a deep learning approach capable of learning the underlying dynamics of the ocean system, complementing the classical methods. Additionally, we show how Fourier neural operators allow us to train the network at one resolution and generate ensembles at a different resolution. We find that there is an intermediate time scale where the prediction skill is maximized.
期刊介绍:
The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community.
Open access. Articles are available free of charge for everyone with Internet access to view and download.
Formal peer review.
Supplemental material, such as code samples, images, and visualizations, is published at no additional charge.
No additional charge for color figures.
Modest page charges to cover production costs.
Articles published in high-quality full text PDF, HTML, and XML.
Internal and external reference linking, DOI registration, and forward linking via CrossRef.