Ocean Emulation With Fourier Neural Operators: Double Gyre

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Suyash Bire, Björn Lütjens, Kamyar Azizzadenesheli, Animashree Anandkumar, Chris Hill
{"title":"Ocean Emulation With Fourier Neural Operators: Double Gyre","authors":"Suyash Bire,&nbsp;Björn Lütjens,&nbsp;Kamyar Azizzadenesheli,&nbsp;Animashree Anandkumar,&nbsp;Chris Hill","doi":"10.1029/2023MS004137","DOIUrl":null,"url":null,"abstract":"<p>A data-driven emulator for the baroclinic double gyre ocean simulation is presented in this study. Traditional numerical simulations using partial differential equations (PDEs) often require substantial computational resources, hindering real-time applications and inhibiting model scalability. This study presents a novel approach employing Fourier neural operators to address these challenges in an idealized double-gyre ocean simulation. We propose a deep learning approach capable of learning the underlying dynamics of the ocean system, complementing the classical methods. Additionally, we show how Fourier neural operators allow us to train the network at one resolution and generate ensembles at a different resolution. We find that there is an intermediate time scale where the prediction skill is maximized.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"17 7","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS004137","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023MS004137","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

A data-driven emulator for the baroclinic double gyre ocean simulation is presented in this study. Traditional numerical simulations using partial differential equations (PDEs) often require substantial computational resources, hindering real-time applications and inhibiting model scalability. This study presents a novel approach employing Fourier neural operators to address these challenges in an idealized double-gyre ocean simulation. We propose a deep learning approach capable of learning the underlying dynamics of the ocean system, complementing the classical methods. Additionally, we show how Fourier neural operators allow us to train the network at one resolution and generate ensembles at a different resolution. We find that there is an intermediate time scale where the prediction skill is maximized.

Abstract Image

用傅里叶神经算子的海洋仿真:双环流
本文提出了一种数据驱动的斜压双环流海洋模拟模拟器。传统的偏微分方程数值模拟往往需要大量的计算资源,阻碍了实时应用,抑制了模型的可扩展性。本研究提出了一种采用傅里叶神经算子的新方法来解决理想双环流海洋模拟中的这些挑战。我们提出了一种能够学习海洋系统潜在动力学的深度学习方法,补充了经典方法。此外,我们展示了傅里叶神经算子如何允许我们以一种分辨率训练网络并以不同分辨率生成集成。我们发现存在一个中间时间尺度,其中预测技能是最大化的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信