Bounds on MLDR Codes Over 𝕫pt

IF 2.9 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Tim L. Alderson
{"title":"Bounds on MLDR Codes Over 𝕫pt","authors":"Tim L. Alderson","doi":"10.1109/TIT.2025.3579249","DOIUrl":null,"url":null,"abstract":"Upper bounds on the minimum Lee distance of codes that are linear over <inline-formula> <tex-math>$\\mathbb {Z}_{q}$ </tex-math></inline-formula>, <inline-formula> <tex-math>$q=p^{t}$ </tex-math></inline-formula>, <italic>p</i> prime are discussed. The bounds are Singleton like, depending on the length, rank, and alphabet size of the code. Codes meeting such bounds are referred to as Maximum Lee Distance with respect to Rank (MLDR) Codes. We present some new bounds on MLDR codes, using combinatorial arguments. In the context of MLDR codes, our work provides improvements over existing bounds in the literature.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 8","pages":"5912-5919"},"PeriodicalIF":2.9000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11032189/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Upper bounds on the minimum Lee distance of codes that are linear over $\mathbb {Z}_{q}$ , $q=p^{t}$ , p prime are discussed. The bounds are Singleton like, depending on the length, rank, and alphabet size of the code. Codes meeting such bounds are referred to as Maximum Lee Distance with respect to Rank (MLDR) Codes. We present some new bounds on MLDR codes, using combinatorial arguments. In the context of MLDR codes, our work provides improvements over existing bounds in the literature.
MLDR代码的边界在𝕫pt上
讨论了$\mathbb {Z}_{q}$, $q=p^{t}$, p '上线性码的最小李氏距离的上界。边界类似于Singleton,取决于代码的长度、排名和字母大小。满足这些界限的码被称为相对于秩的最大李距离(MLDR)码。我们使用组合参数给出了MLDR代码的一些新的边界。在MLDR代码的上下文中,我们的工作提供了对文献中现有边界的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信