Optimization of hybrid sensible-latent seasonal heat storage systems

IF 11 1区 工程技术 Q1 ENERGY & FUELS
William Delgado-Díaz , Willy Villasmil , Marcel Troxler , Ruben Hijwegen , Reto Hendry , Ueli Schilt , Philipp Roos , Rebecca Ravotti , Anastasia Stamatiou , Sophia Haussener , Jörg Worlitschek
{"title":"Optimization of hybrid sensible-latent seasonal heat storage systems","authors":"William Delgado-Díaz ,&nbsp;Willy Villasmil ,&nbsp;Marcel Troxler ,&nbsp;Ruben Hijwegen ,&nbsp;Reto Hendry ,&nbsp;Ueli Schilt ,&nbsp;Philipp Roos ,&nbsp;Rebecca Ravotti ,&nbsp;Anastasia Stamatiou ,&nbsp;Sophia Haussener ,&nbsp;Jörg Worlitschek","doi":"10.1016/j.apenergy.2025.126235","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a coupled techno-economic and environmental model of hybrid sensible-latent thermal energy storage (TES) systems, integrating phase change material (PCM) macro-capsules to enhance storage capacity and performance. The multi-scale model accounts for stratification in the sensible storage and phase change dynamics in the PCM capsules. This framework is used to perform multi-objective optimization across the full range of thermal self-sufficiency (<span><math><msub><mtext>SS</mtext><mrow><mtext>th</mtext></mrow></msub></math></span>) levels for a multi-family building. The results show that a 70 % <span><math><msub><mtext>SS</mtext><mrow><mtext>th</mtext></mrow></msub></math></span> offers the optimal balance between economic feasibility and environmental impact, with a Levelized Cost of Heat (LCOH) of 0.27 CHF/kWh and a Global Warming Potential (GWP) reduction of 76 % compared to fossil fuel alternatives. Systems targeting up to 85 % <span><math><msub><mtext>SS</mtext><mrow><mtext>th</mtext></mrow></msub></math></span> are technically feasible but come with increased costs (up to 0.33 CHF/kWh), while exceeding 85 % <span><math><msub><mtext>SS</mtext><mrow><mtext>th</mtext></mrow></msub></math></span> results in exponential increases in both cost and storage volume. Maximizing photovoltaic (PV) and heat pump (HP) power is critical for optimizing system performance. Future advancements in PCM technology and decreasing PV costs could lower the LCOH to 0.23 CHF/kWh and the GWP to 21 % of fossil fuel systems, demonstrating significant potential for long-term cost reductions and sustainability.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"399 ","pages":"Article 126235"},"PeriodicalIF":11.0000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925009651","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a coupled techno-economic and environmental model of hybrid sensible-latent thermal energy storage (TES) systems, integrating phase change material (PCM) macro-capsules to enhance storage capacity and performance. The multi-scale model accounts for stratification in the sensible storage and phase change dynamics in the PCM capsules. This framework is used to perform multi-objective optimization across the full range of thermal self-sufficiency (SSth) levels for a multi-family building. The results show that a 70 % SSth offers the optimal balance between economic feasibility and environmental impact, with a Levelized Cost of Heat (LCOH) of 0.27 CHF/kWh and a Global Warming Potential (GWP) reduction of 76 % compared to fossil fuel alternatives. Systems targeting up to 85 % SSth are technically feasible but come with increased costs (up to 0.33 CHF/kWh), while exceeding 85 % SSth results in exponential increases in both cost and storage volume. Maximizing photovoltaic (PV) and heat pump (HP) power is critical for optimizing system performance. Future advancements in PCM technology and decreasing PV costs could lower the LCOH to 0.23 CHF/kWh and the GWP to 21 % of fossil fuel systems, demonstrating significant potential for long-term cost reductions and sustainability.
季节显潜混合蓄热系统的优化
本研究提出了一种结合相变材料(PCM)宏观胶囊的显潜热储能(TES)系统的技术经济和环境耦合模型,以提高储能容量和性能。该多尺度模型考虑了PCM胶囊中感应储存的分层和相变动力学。该框架用于在多户建筑的热自给(SSth)水平的全范围内执行多目标优化。结果表明,与化石燃料替代品相比,70% %的SSth提供了经济可行性和环境影响之间的最佳平衡,平均热成本(LCOH)为0.27 CHF/kWh,全球变暖潜能值(GWP)降低76. %。达到85% % SSth的系统在技术上是可行的,但成本会增加(高达0.33瑞士法郎/千瓦时),而超过85% % SSth会导致成本和存储容量呈指数级增长。最大化光伏(PV)和热泵(HP)功率是优化系统性能的关键。未来PCM技术的进步和光伏成本的降低可能会将化石燃料系统的LCOH降至0.23瑞士法郎/千瓦时,GWP降至21. %,显示出长期成本降低和可持续性的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Energy
Applied Energy 工程技术-工程:化工
CiteScore
21.20
自引率
10.70%
发文量
1830
审稿时长
41 days
期刊介绍: Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信