Mixture-conservative temperature-based Baer–Nunziato solver for efficient full-disequilibrium simulations of real fluids

IF 3 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
G. Sirianni , B. Re , R. Abgrall
{"title":"Mixture-conservative temperature-based Baer–Nunziato solver for efficient full-disequilibrium simulations of real fluids","authors":"G. Sirianni ,&nbsp;B. Re ,&nbsp;R. Abgrall","doi":"10.1016/j.compfluid.2025.106761","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we present a primitive update scheme for the full-disequilibrium Baer–Nunziato equations that is conservative in the total energy of the mixture and valid for generic equations of state. The update scheme is derived for a generic thermodynamic variable and is independent of the chosen spatial discretization. We show results of various Riemann problems from the literature obtained by updating phasic temperatures through the proposed scheme and compare them to the standard approach and analytical solutions. The total energy imbalance of the mixture is assessed, and computational speed-ups using the Span–Wagner equation of state are briefly discussed. Finally, the scheme is tested in complex thermodynamic conditions on a two-phase non-ideal and a two-fluid non-classical Riemann problem, using the Span–Wagner equation of state with vanishing phases.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"300 ","pages":"Article 106761"},"PeriodicalIF":3.0000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004579302500221X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we present a primitive update scheme for the full-disequilibrium Baer–Nunziato equations that is conservative in the total energy of the mixture and valid for generic equations of state. The update scheme is derived for a generic thermodynamic variable and is independent of the chosen spatial discretization. We show results of various Riemann problems from the literature obtained by updating phasic temperatures through the proposed scheme and compare them to the standard approach and analytical solutions. The total energy imbalance of the mixture is assessed, and computational speed-ups using the Span–Wagner equation of state are briefly discussed. Finally, the scheme is tested in complex thermodynamic conditions on a two-phase non-ideal and a two-fluid non-classical Riemann problem, using the Span–Wagner equation of state with vanishing phases.
基于混合保守温度的真实流体全不平衡模拟的Baer-Nunziato求解器
在这项工作中,我们提出了一个完全不平衡的Baer-Nunziato方程的原始更新方案,该方案在混合物的总能量上是保守的,并且对一般状态方程有效。该更新方案是针对一般热力学变量导出的,与所选择的空间离散无关。我们展示了通过提出的方案更新相温度从文献中获得的各种黎曼问题的结果,并将它们与标准方法和解析解进行了比较。评估了混合物的总能量不平衡,并简要讨论了使用Span-Wagner状态方程的计算加速。最后,利用消失相的Span-Wagner状态方程,在复杂热力学条件下对两相非理想和两流体非经典黎曼问题进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信