Ag2CdP2S6 2D semiconductor photocatalyst: Pioneering efficient green hydrogen production through solar water splitting

A. Chafai
{"title":"Ag2CdP2S6 2D semiconductor photocatalyst: Pioneering efficient green hydrogen production through solar water splitting","authors":"A. Chafai","doi":"10.1016/j.nxmate.2025.100933","DOIUrl":null,"url":null,"abstract":"<div><div>The escalating global pollution crisis, largely driven by fossil fuel consumption in industrial sectors responsible for approximately 75% of global greenhouse gas emissions, underscores the urgent need for sustainable clean energy solutions to achieve decarbonization targets. This study explores the potential of Ag<sub>2</sub>CdP<sub>2</sub>S<sub>6</sub>, a novel two-dimensional (2D) semiconductor, as an effective photocatalyst for green hydrogen production through solar water splitting. Using density functional theory (DFT) calculations, we confirm the material’s dynamic and thermal stability via phonon analysis and ab initio molecular dynamics (AIMD) simulations. Band structure analyses reveal a semiconducting nature with a direct band gap of approximately <span><math><mrow><mn>1</mn><mo>.</mo><mn>95</mn><mspace></mspace><mi>eV</mi></mrow></math></span> and <span><math><mrow><mn>3</mn><mo>.</mo><mn>15</mn><mspace></mspace><mi>eV</mi></mrow></math></span> at DFT-PBE and DFT-HSE06 levels, respectively. Notably, absorption coefficient analysis demonstrates significant peaks in the ultraviolet region <span><math><mrow><mo>(</mo><mn>149620</mn><mspace></mspace><msup><mrow><mi>cm</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>,</mo><mn>8</mn><mo>.</mo><mn>57</mn><mspace></mspace><mi>eV</mi><mo>)</mo></mrow></math></span> alongside considerable visible light absorption <span><math><mrow><mo>(</mo><mn>11564</mn><mspace></mspace><msup><mrow><mi>cm</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>,</mo><mn>3</mn><mo>.</mo><mn>26</mn><mspace></mspace><mi>eV</mi><mo>)</mo></mrow></math></span>. The conduction band minimum (CBM) is calculated at <span><math><mrow><mo>−</mo><mn>3</mn><mo>.</mo><mn>69</mn><mspace></mspace><mi>eV</mi></mrow></math></span>, and the valence band maximum (VBM) at <span><math><mrow><mo>−</mo><mn>6</mn><mo>.</mo><mn>84</mn><mspace></mspace><mi>eV</mi></mrow></math></span>, satisfying the criteria for effective hydrogen evolution reaction (HER). Under acidic conditions, optimal HER kinetics are observed at phosphorus (P) atom sites with a near-ideal Gibbs free energy change (<span><math><mrow><mi>Δ</mi><msubsup><mrow><mi>G</mi></mrow><mrow><mi>H</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></math></span>) of approximately <span><math><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>02</mn><mspace></mspace><mi>eV</mi></mrow></math></span>. Meanwhile, tilted sulfur (S) sites exhibit superior water splitting efficiency at neutral (<span><math><mrow><mi>p</mi><mi>H</mi><mo>=</mo><mn>7</mn></mrow></math></span>) and slightly alkaline conditions (<span><math><mrow><mi>p</mi><mi>H</mi><mo>=</mo><mn>8</mn><mo>.</mo><mn>3</mn></mrow></math></span>), with <span><math><mrow><mi>Δ</mi><msubsup><mrow><mi>G</mi></mrow><mrow><mi>H</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></math></span> values of <span><math><mrow><mn>0</mn><mo>.</mo><mn>66</mn><mspace></mspace><mi>eV</mi></mrow></math></span> and <span><math><mrow><mn>0</mn><mo>.</mo><mn>51</mn><mspace></mspace><mi>eV</mi></mrow></math></span>, respectively. These findings highlight the versatility and efficiency of Ag<sub>2</sub>CdP<sub>2</sub>S<sub>6</sub> as photocatalyst across diverse pH conditions, characterized by enhanced charge transfer properties, thereby contributing to the advancement of renewable hydrogen production technologies.</div></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"9 ","pages":"Article 100933"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949822825004514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The escalating global pollution crisis, largely driven by fossil fuel consumption in industrial sectors responsible for approximately 75% of global greenhouse gas emissions, underscores the urgent need for sustainable clean energy solutions to achieve decarbonization targets. This study explores the potential of Ag2CdP2S6, a novel two-dimensional (2D) semiconductor, as an effective photocatalyst for green hydrogen production through solar water splitting. Using density functional theory (DFT) calculations, we confirm the material’s dynamic and thermal stability via phonon analysis and ab initio molecular dynamics (AIMD) simulations. Band structure analyses reveal a semiconducting nature with a direct band gap of approximately 1.95eV and 3.15eV at DFT-PBE and DFT-HSE06 levels, respectively. Notably, absorption coefficient analysis demonstrates significant peaks in the ultraviolet region (149620cm1,8.57eV) alongside considerable visible light absorption (11564cm1,3.26eV). The conduction band minimum (CBM) is calculated at 3.69eV, and the valence band maximum (VBM) at 6.84eV, satisfying the criteria for effective hydrogen evolution reaction (HER). Under acidic conditions, optimal HER kinetics are observed at phosphorus (P) atom sites with a near-ideal Gibbs free energy change (ΔGH) of approximately 0.02eV. Meanwhile, tilted sulfur (S) sites exhibit superior water splitting efficiency at neutral (pH=7) and slightly alkaline conditions (pH=8.3), with ΔGH values of 0.66eV and 0.51eV, respectively. These findings highlight the versatility and efficiency of Ag2CdP2S6 as photocatalyst across diverse pH conditions, characterized by enhanced charge transfer properties, thereby contributing to the advancement of renewable hydrogen production technologies.

Abstract Image

Ag2CdP2S6二维半导体光催化剂:首创太阳能水分解高效绿色制氢技术
全球污染危机不断升级,主要是由占全球温室气体排放量约75%的工业部门的化石燃料消费推动的,这突显出迫切需要可持续的清洁能源解决方案来实现脱碳目标。本研究探索了新型二维半导体Ag2CdP2S6作为太阳能水分解绿色制氢的有效光催化剂的潜力。利用密度泛函理论(DFT)计算,我们通过声子分析和从头算分子动力学(AIMD)模拟证实了材料的动态和热稳定性。带结构分析显示,DFT-PBE和DFT-HSE06能级的直接带隙分别约为1.95eV和3.15eV,具有半导体性质。值得注意的是,吸收系数分析表明,紫外区(149620cm−1,8.57 ev)有显著的峰,可见光吸收(11564cm−1,3.26 ev)也相当可观。导带最小值(CBM)在−3.69eV,价带最大值(VBM)在−6.84eV,满足有效析氢反应(HER)的标准。在酸性条件下,在磷(P)原子位置观察到最佳的she动力学,Gibbs自由能变化(ΔGH *)接近理想,约为- 0.02eV。同时,倾斜硫(S)位点在中性(pH=7)和微碱性(pH=8.3)条件下表现出优异的水裂解效率,ΔGH∗值分别为0.66eV和0.51eV。这些发现突出了Ag2CdP2S6在不同pH条件下作为光催化剂的多功能性和效率,其特点是增强了电荷转移特性,从而促进了可再生制氢技术的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信