Yaqiao Yi , Xuan Zhu , Pu Jia , Weicai Cai , Lin Liu
{"title":"Nature's answer to Ferroptosis: how bioactive compounds rewire oxidative stress circuits in cerebral ischemia","authors":"Yaqiao Yi , Xuan Zhu , Pu Jia , Weicai Cai , Lin Liu","doi":"10.1016/j.intimp.2025.115250","DOIUrl":null,"url":null,"abstract":"<div><div>Ischemic stroke is a cerebrovascular disease caused by the interruption of local blood flow in the brain. The mechanism of cerebral ischemia-reperfusion injury (CIRI) is complex and involves multiple pathological processes and signaling pathways. Ferroptosis, an iron-dependent regulated cell death form caused by excessive lipid peroxidation, is associated with the pathological occurrence and therapeutic response of various types of neurodegenerative diseases. Increased iron accumulation, free radical production, fatty acid supply, and lipid peroxidation are key factors in inducing ferroptosis. After acute ischemic stroke, the body experiences an over-accumulation of iron, lipid peroxidation, and reactive oxygen species in the cytoplasm by affecting neural system iron metabolism, lipid metabolism, and amino acid metabolism. This leads to the induction of ferroptosis. This article reviews the three metabolic pathways (iron metabolism pathway, amino acid metabolism pathway, lipid metabolism pathway, (seleno)thiol metabolism pathway, citric acid pathway, etc.) and multiple related regulatory signaling pathways (Nrf2 pathway; (hemi)cysteine/GSH/GPX4 pathway, NAD(<em>P</em>)H/FSP1/CoQ10 pathway; GCH1/BH4/DHFR signaling pathway; etc.) involved in ferroptosis occurrence in neural cells following acute ischemic stroke. It also highlights the changes in several key regulatory molecules, such as hypoxia-inducible factor-1α (HIF-1α), BTB and CNC homology 1 (BACH1), tumor suppressor gene p53, nuclear receptor coactivator 4 (NCOA4), and activating transcription factor 3 (ATF3), and the downstream mechanisms regulated by these molecules. Through an analysis of the potential mechanisms of ferroptosis occurrence and development in ischemic stroke, this article aims to provide reference for effective treatment of ischemic stroke and improvement of patient prognosis. Meanwhile, this review proposes a synergistic model of the “ferroptosis–oxidative stress–neuroinflammation” triad in ischemic stroke for the first time, providing a theoretical foundation for the development of neuroprotective agents based on natural compounds.</div></div>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":"163 ","pages":"Article 115250"},"PeriodicalIF":4.7000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567576925012408","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ischemic stroke is a cerebrovascular disease caused by the interruption of local blood flow in the brain. The mechanism of cerebral ischemia-reperfusion injury (CIRI) is complex and involves multiple pathological processes and signaling pathways. Ferroptosis, an iron-dependent regulated cell death form caused by excessive lipid peroxidation, is associated with the pathological occurrence and therapeutic response of various types of neurodegenerative diseases. Increased iron accumulation, free radical production, fatty acid supply, and lipid peroxidation are key factors in inducing ferroptosis. After acute ischemic stroke, the body experiences an over-accumulation of iron, lipid peroxidation, and reactive oxygen species in the cytoplasm by affecting neural system iron metabolism, lipid metabolism, and amino acid metabolism. This leads to the induction of ferroptosis. This article reviews the three metabolic pathways (iron metabolism pathway, amino acid metabolism pathway, lipid metabolism pathway, (seleno)thiol metabolism pathway, citric acid pathway, etc.) and multiple related regulatory signaling pathways (Nrf2 pathway; (hemi)cysteine/GSH/GPX4 pathway, NAD(P)H/FSP1/CoQ10 pathway; GCH1/BH4/DHFR signaling pathway; etc.) involved in ferroptosis occurrence in neural cells following acute ischemic stroke. It also highlights the changes in several key regulatory molecules, such as hypoxia-inducible factor-1α (HIF-1α), BTB and CNC homology 1 (BACH1), tumor suppressor gene p53, nuclear receptor coactivator 4 (NCOA4), and activating transcription factor 3 (ATF3), and the downstream mechanisms regulated by these molecules. Through an analysis of the potential mechanisms of ferroptosis occurrence and development in ischemic stroke, this article aims to provide reference for effective treatment of ischemic stroke and improvement of patient prognosis. Meanwhile, this review proposes a synergistic model of the “ferroptosis–oxidative stress–neuroinflammation” triad in ischemic stroke for the first time, providing a theoretical foundation for the development of neuroprotective agents based on natural compounds.
期刊介绍:
International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome.
The subject material appropriate for submission includes:
• Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders.
• Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state.
• Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses.
• Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action.
• Agents that activate genes or modify transcription and translation within the immune response.
• Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active.
• Production, function and regulation of cytokines and their receptors.
• Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.