M. Gerbeit , H. Seeber , D. Grasse , M. Donner , S. Grobert , D. Krentel
{"title":"Test set-up for reproducible shock wave generation","authors":"M. Gerbeit , H. Seeber , D. Grasse , M. Donner , S. Grobert , D. Krentel","doi":"10.1016/j.jlp.2025.105736","DOIUrl":null,"url":null,"abstract":"<div><div>A test setup was developed at the BAM test site to generate and record reproducible, adjustable shock waves resulting from gas detonations. The setup is used to study the impact of blasts on humans and structures with short setup times. To further develop this innovative test bench and improve reproducibility, the ignition source and gas composition is analysed in more detail.</div><div>The experimental setup consists of a cylindrical pressure vessel (autoclave) that is operated with acetylene and oxygen at ambient pressure. The elevated pressure resulting from the combustion process is released through an orifice by the instantaneous rupture of a diaphragm. The shock propagates symmetrically into the free field, where it interacts with the models and sensors to be analysed. With this design, shock waves with a typical ideal Friedlander waveform characteristic, except for a reflection and a muzzle blast-like behavior that deviates from the ideal characteristics, can be generated. This setup enables an average peak overpressure of 88 kPa. By using exploding wires as an ignition source in comparison to a fusehead, the reproducibility was significantly increased during the test to <span><math><mrow><mi>σ</mi><mo>=</mo><mn>2.8</mn></mrow></math></span> kPa from <span><math><mrow><mi>σ</mi><mo>=</mo><mn>9.5</mn></mrow></math></span> kPa previously.</div><div>The presented data confirms the quality and reliability of this setup in generating realistic, reproducible shocks.</div></div>","PeriodicalId":16291,"journal":{"name":"Journal of Loss Prevention in The Process Industries","volume":"98 ","pages":"Article 105736"},"PeriodicalIF":4.2000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Loss Prevention in The Process Industries","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950423025001949","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A test setup was developed at the BAM test site to generate and record reproducible, adjustable shock waves resulting from gas detonations. The setup is used to study the impact of blasts on humans and structures with short setup times. To further develop this innovative test bench and improve reproducibility, the ignition source and gas composition is analysed in more detail.
The experimental setup consists of a cylindrical pressure vessel (autoclave) that is operated with acetylene and oxygen at ambient pressure. The elevated pressure resulting from the combustion process is released through an orifice by the instantaneous rupture of a diaphragm. The shock propagates symmetrically into the free field, where it interacts with the models and sensors to be analysed. With this design, shock waves with a typical ideal Friedlander waveform characteristic, except for a reflection and a muzzle blast-like behavior that deviates from the ideal characteristics, can be generated. This setup enables an average peak overpressure of 88 kPa. By using exploding wires as an ignition source in comparison to a fusehead, the reproducibility was significantly increased during the test to kPa from kPa previously.
The presented data confirms the quality and reliability of this setup in generating realistic, reproducible shocks.
期刊介绍:
The broad scope of the journal is process safety. Process safety is defined as the prevention and mitigation of process-related injuries and damage arising from process incidents involving fire, explosion and toxic release. Such undesired events occur in the process industries during the use, storage, manufacture, handling, and transportation of highly hazardous chemicals.