The DarkMachines High Dimensional Sampling Group, Joshua Albert , Csaba Balázs , Andrew Fowlie , Will Handley , Nicholas Hunt-Smith , Roberto Ruiz de Austri , Martin White
{"title":"A comparison of Bayesian sampling algorithms for high-dimensional particle physics and cosmology applications","authors":"The DarkMachines High Dimensional Sampling Group, Joshua Albert , Csaba Balázs , Andrew Fowlie , Will Handley , Nicholas Hunt-Smith , Roberto Ruiz de Austri , Martin White","doi":"10.1016/j.cpc.2025.109756","DOIUrl":null,"url":null,"abstract":"<div><div>For several decades now, Bayesian inference techniques have been applied to theories of particle physics, cosmology and astrophysics to obtain the probability density functions of their free parameters. In this study, we review and compare a wide range of Markov chain Monte Carlo (MCMC) and nested sampling techniques to determine their relative efficacy on functions that resemble those encountered most frequently in the particle astrophysics literature. Our first series of tests explores a series of high-dimensional analytic test functions that exemplify particular challenges, for example highly multimodal posteriors or posteriors with curving degeneracies. We then investigate two real physics examples, the first being a global fit of the Λ CDM model using cosmic microwave background data from the Planck experiment, and the second being a global fit of the Minimal Supersymmetric Standard Model using a wide variety of collider and astrophysics data. We show that several examples widely thought to be most easily solved using nested sampling approaches can in fact be more efficiently solved using modern MCMC algorithms, but the details of the implementation matter. Furthermore, we also provide a series of useful insights for practitioners of particle astrophysics and cosmology.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"315 ","pages":"Article 109756"},"PeriodicalIF":3.4000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465525002589","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
For several decades now, Bayesian inference techniques have been applied to theories of particle physics, cosmology and astrophysics to obtain the probability density functions of their free parameters. In this study, we review and compare a wide range of Markov chain Monte Carlo (MCMC) and nested sampling techniques to determine their relative efficacy on functions that resemble those encountered most frequently in the particle astrophysics literature. Our first series of tests explores a series of high-dimensional analytic test functions that exemplify particular challenges, for example highly multimodal posteriors or posteriors with curving degeneracies. We then investigate two real physics examples, the first being a global fit of the Λ CDM model using cosmic microwave background data from the Planck experiment, and the second being a global fit of the Minimal Supersymmetric Standard Model using a wide variety of collider and astrophysics data. We show that several examples widely thought to be most easily solved using nested sampling approaches can in fact be more efficiently solved using modern MCMC algorithms, but the details of the implementation matter. Furthermore, we also provide a series of useful insights for practitioners of particle astrophysics and cosmology.
期刊介绍:
The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper.
Computer Programs in Physics (CPiP)
These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged.
Computational Physics Papers (CP)
These are research papers in, but are not limited to, the following themes across computational physics and related disciplines.
mathematical and numerical methods and algorithms;
computational models including those associated with the design, control and analysis of experiments; and
algebraic computation.
Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.